K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

\(\frac{a}{b}+\frac{c}{d}=\frac{a.c}{b.d}\)

Vậy \(\frac{a.d+b.c}{bd}=\frac{ac}{bd}\)

\(\Leftrightarrow ad+bc=ac\)

\(\Leftrightarrow ad=ac-bc\)

\(\Leftrightarrow ad=c\left(a-b\right)\)

\(\Leftrightarrow\frac{a}{b}=\frac{a}{a-b}\)

2 tháng 7 2017

\(\frac{a}{b}+\frac{c}{d}=\frac{a\cdot c}{b\cdot d}\)

Vậy \(\frac{a\cdot b+b\cdot c}{bd}=\frac{ac}{bd}\)

\(\Rightarrow ad+bc=ac\)

\(\Rightarrow ad=ac-bc\)

\(\Rightarrow ad=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a}{a-b}\)

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

18 tháng 12 2016

\(\frac{b+c+d}{a}\)\(\frac{c+d+a}{b}\)\(\frac{d+a+b}{c}\)\(\frac{a+b+c}{d}\)

\(\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(\frac{3a+3b+3c+3d}{a+b+c+d}\)

\(\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)= 3

vậy k = 3

14 tháng 1 2017

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=k

áp dụng tc dãy tỉ số bằng nhau ta được:

b+c+d+c+d+a+d+a+b+a+b+c/a+b+c+d=k

=>3a+3b+3c+3d/a+b+c+d=k

=>3+k

=>k=3

Vậy k=3

14 tháng 6 2015

\(\frac{a}{b}+\frac{c}{d}=\frac{a}{b}\cdot\frac{c}{d}\)

đề như vậy á?

25 tháng 9 2017

Đề sai sai á

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiênBài 2:a,Với giá trị nào của x thì ta...
Đọc tiếp

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.

b, Tìm số nguyên a để \(\frac{5}{4}\)\(\frac{a}{a+1}\)được thương là một số nguyên.

c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên

Bài 2:a,Với giá trị nào của x thì ta có:

1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương                  2,B=\(\frac{x-0,5}{x+1}\)là số âm.

b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)

c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.

Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)

B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\)     C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\)    D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)   F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)

 

 

4
25 tháng 8 2017

fewqfjkewqf

25 tháng 8 2017

Các bạn ơi giải giúp mink vs mink đg cần gấp

5 tháng 8 2016

Cộng thêm 1 vào mỗi tỉ số đã cho ta được:

\(\frac{b+c+d}{a}\) +1 = \(\frac{c+d+a}{b}\) +1 = \(\frac{d+a+b}{c}\) +1= \(\frac{a+b+c}{d}\) +1

\(\frac{a+b+c+d}{a}\) = \(\frac{a+b+c+d}{b}\) = \(\frac{a+b+c+d}{c}\) = \(\frac{a+b+c+d}{d}\) 

Vì a+b+c+d khác 0 nên a=b=c=d

Suy ra k= \(\frac{3a}{a}\) = 3

13 tháng 2 2020

1. \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1\)\(=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)(1)

TH1: \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right)\)\(b+c=-\left(d+a\right)\)\(c+d=-\left(a+b\right)\)\(d+a=-\left(b+c\right)\)

\(\Rightarrow M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+2017=-4+2017=2013\)

TH2: \(a+b+c+d\ne0\)

Từ (1) \(\Rightarrow a=b=c=d\)\(\Rightarrow M=1+1+1+1+2017=4+2017=2021\)

Vậy \(M=2013\)hoặc \(M=2021\)

2. \(2n-5=2n+2-7=2\left(n+1\right)-7\)

Vì \(2\left(n+1\right)⋮n+1\)\(\Rightarrow\)Để \(2n-5⋮n+1\)thì \(7⋮n+1\)

\(\Rightarrow n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)\(\Rightarrow n\in\left\{-8;-2;0;6\right\}\)

Vậy \(n\in\left\{-8;-2;0;6\right\}\)

29 tháng 8 2016

đụ mẹ bọn online math

29 tháng 8 2016
J vậy bạn

Bài 1: 

Theo đề, ta có: 

\(\dfrac{-13}{2}< \dfrac{11}{a}< \dfrac{-13}{3}\)

\(\Leftrightarrow\dfrac{-143}{26}< \dfrac{-143}{-13a}< \dfrac{-143}{33}\)

\(\Leftrightarrow\dfrac{143}{26}>\dfrac{143}{-13a}>\dfrac{143}{33}\)

hay \(a\in\varnothing\)