K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2021

\(\dfrac{a-x}{b-y}=\dfrac{a}{b}\)

\(\Rightarrow\dfrac{a-x}{a}=\dfrac{b-y}{b}\)

\(\Rightarrow1-\dfrac{x}{a}=1-\dfrac{y}{b}\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{a}{b}\)

5 tháng 3 2018

Ta có: \(\frac{a-x}{b-y}=\frac{a}{b}\Rightarrow\left(a-x\right)b=\left(b-y\right)a\)

\(\Rightarrow ab-bx=ab-ay\Rightarrow bx=ay\)

\(\Rightarrow\frac{x}{y}=\frac{a}{b}\left(ĐPCM\right)\)

6 tháng 3 2018
Cảm ơn bạn Naka Nazuki nhé!!
18 tháng 4 2021

\(\dfrac{a-x}{b-y}=\dfrac{a}{b}\)

\(\Rightarrow\left(a-x\right).b=\left(b-y\right).a\)

\(\Rightarrow ab-xb=ba-ya\)

\(\Rightarrow xb=ya\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{x}{y}\) (đpcm)

11 tháng 8 2017

Bài 1:

a) \(\dfrac{x^2}{6}=\dfrac{24}{25}\)

\(\Leftrightarrow x^2.25=6.24\)

\(\Leftrightarrow x^2.25=144\)

\(\Leftrightarrow x^2=144:25\)

\(\Leftrightarrow x^2=5,76\)

\(\Leftrightarrow x=2,4\)

b) \(\dfrac{x-1}{x+5}=\dfrac{6}{7}\)

\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)

\(\Leftrightarrow7x-7=6x+30\)

\(\Leftrightarrow7x=6x+30+7\)

\(\Leftrightarrow7x=6x+37\)

\(\Leftrightarrow7x-6x=37\)

\(\Leftrightarrow x=37\)

c) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x-2\right).x+\left(x-2\right).7=\left(x+4\right).x-\left(x+4\right)\)

\(\Leftrightarrow x^2-2x+7x-14=x^2+4x-x-4\)

\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)

\(\Leftrightarrow x^2+5x-14+4-3x-x^2=0\)

\(\Leftrightarrow\left(x^2-x^2\right)+\left(5x-3x\right)-\left(14-4\right)=0\)

\(\Leftrightarrow2x-10=0\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=10:2=5\)

11 tháng 8 2017

Bài 2:

\(\dfrac{x}{7}=\dfrac{y}{13}\)\(x+y=40\)

Ta có: \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)

Do đó \(\left\{{}\begin{matrix}\dfrac{x}{7}=2\Rightarrow x=14\\\dfrac{y}{13}=2\Rightarrow y=26\end{matrix}\right.\)

Vậy \(x=14;y=26\)

21 tháng 7 2017

a, b, c là ba số nguyên tố khác nhau.

Ta có [a, b]= a.b, [b, c]= b.c, [c.a]= c.a

Do đó \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{[c,a]}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\)

Ta có: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\le\dfrac{1}{2.3}+\dfrac{1}{3.5}+\dfrac{1}{5.2}\)

mả \(\dfrac{1}{2.3}+\dfrac{1}{3.5}+\dfrac{1}{5.2}=\dfrac{5+2+3}{30}=\dfrac{1}{3}\).

Do đó \(\dfrac{1}{\left[a,b\right]}+\dfrac{1}{\left[b,c\right]}+\dfrac{1}{\left[c,a\right]}\le\dfrac{1}{3}\).

18 tháng 5 2017

a)Ta có:\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b^2+b}< \dfrac{1}{b^2}\)(do b>1)

\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{\left(b-1\right)b}=\dfrac{1}{b^2-b}>\dfrac{1}{b^2}\)(do b>1)

b)Áp dụng từ câu a

=>\(\dfrac{1}{2}-\dfrac{1}{3}< \dfrac{1}{2^2}< \dfrac{1}{1}-\dfrac{1}{2}\)

\(\dfrac{1}{3}-\dfrac{1}{4}< \dfrac{1}{3^2}< \dfrac{1}{2}-\dfrac{1}{3}\)

.........................

\(\dfrac{1}{9}-\dfrac{1}{10}< \dfrac{1}{9^2}< \dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}< S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{10}< S< 1-\dfrac{1}{9}\)

=>\(\dfrac{2}{5}< S< \dfrac{8}{9}\)(đpcm)

18 tháng 5 2017

thanks bn nhìu

5 tháng 5 2018

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6

21 tháng 7 2018

AD tích chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

\(\Rightarrow DPCM\)

1.Tính giá trị các biểu thức sau a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\) b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\) 2.Tìm x biết \(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\) 3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13 b, Cho M = b -...
Đọc tiếp

1.Tính giá trị các biểu thức sau

a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\)

b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\)

2.Tìm x biết

\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)

3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13

b, Cho M = b - \(\dfrac{2017}{2018}\left(-a+b\right)-\left(\dfrac{1}{2018}b+\dfrac{2015}{2017}c-a\right)-\left(\dfrac{2}{201}c+a\right)+c\)

Trong đó b, c ∈ Z và a là số nguyên âm. Chứng minh rằng M luôn có giá trị dương

4. a, Tìm tất cả các cặp số nguyên khác 0 sao cho tổng của chúng bằng tổng các nghịch đảo của chúng

b, Tìm số nguyên tố \(\overline{ab}\) (a > b > 0) sao cho \(\overline{ab}-\overline{ba}\) là số chính phương

5. Tìm các số tự nhiên a và b thỏa mãn \(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\)

1

Câu 2: 

\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)

\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)

=>x=11