\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

a, rút gọn phân số đã cho

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2015

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^3+a^2+a^2-1}{\left(a^3+1\right)+\left(2a^2+2a\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b) Gọi d = ƯCLN (a2 + a -1; a2 + a +1) = > a2 + a -1 chia hết cho d và a2 + a +1 chia hết cho d

=> (a2 + a -1) - (a2 + a +1) chia hết cho d hay -2 chia hết cho d = 1 hoặc 2

Nhận xét a2 + a + 1 = a(a+1) + 1

Vì a nguyên nên a; (a+1) là hai số nguyên liên tiếp => tích a(a+1) chẵn => a(a+1) + 1 lẻ 

Do đó, d không thể = 2 => d = 1

=> ps rút gọn là ps tối giản 

27 tháng 2 2017

trần thị loan đúng đấy

13 tháng 3 2015

Tử: dễ thấy -1 là nghiệm của đa thức => tử chia hết cho a+1

Chia tử cho a+1 được a^2+a-1 => Tử = (a+1)(a^2+a-1)

Mẫu: (a^3+1) + (2a^2+2a) = ... = (a+1)(a^2+a+1)

=> Tử/mẫu = (a^2+a-1)/(a^2+a+1)

15 tháng 12 2016

a)

2a^2+6a=2a(a+3)  khác 0=> a khác 0 và a khác -3

a^2-9=(a-3)(a+3) khác 0=> a khác -3 và a khác 3

tỏng hợp a \(\ne\) {-3,0,3}

b)\(B=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a^2-9\right)-6a+18}{\left(a-3\right)\left(a+3\right)}=\frac{\left(a+3\right)^2.\left(a-3\right)^2}{2a.\left(a-3\right)\left(a+3\right)^2}=\frac{a-3}{2a}\)

c)B=0\(\frac{\left(a-3\right)}{2a}=0=>a=3\Rightarrow\left(loai\right)\) kết luận ko có giá trị nào  a ;B =0

d)\(B=1\Rightarrow\left(a-3\right)=2a\Rightarrow a=-3\left(loai\right)\)không có giá trị nào của a cho B=1

27 tháng 6 2019

\(a,\)\(A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}\)

\(=\frac{\left(a+2\right)^2}{a^2\left(a+2\right)-4\left(a+2\right)}\)

\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}\)

\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a+2\right)\left(a-2\right)}\)

\(=\frac{1}{a-2}\)

\(a,A=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}=\frac{a+2}{\left(a-2\right)\left(a+2\right)}=\frac{1}{a-2}\)

b, Để  A có giá trị là một số nguyên thì \(1⋮a-2\)

=> \(\orbr{\begin{cases}a-2=1\\a-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}}\)

23 tháng 12 2017

a)  B = \(\frac{\left(a+3\right)^2}{2a^2+6a}\)\(\left(1-\frac{6a-18}{a^2-9}\right)\)

\(\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\)\(\left(1-\frac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)

\(\frac{a+3}{2a}\).  \(\left(1-\frac{6}{a+3}\right)\)

\(\frac{a+3}{2a}\)\(\frac{a+3-6}{a+3}\)

=   \(\frac{a+3}{2a}\).  \(\frac{a-3}{a+3}\)

\(\frac{a-3}{2a}\)

b)    B =  \(\frac{a-3}{2a}\)= 1

\(\Leftrightarrow\)\(a-3=2a\)

\(\Leftrightarrow\)\(a=-3\)

Vậy khi B = 1  thì   a = -3

8 tháng 12 2019

a) Để P xác định \(\Leftrightarrow\hept{\begin{cases}2a-2\ne0\\2-2a^2\ne0\\a+2\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a^2\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1vâ\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)

b) \(P=\left(\frac{a+1}{2a-2}+\frac{1}{2-2a^2}\right).\frac{2a+2}{a+2}\)

\(=\left[\frac{a+1}{2\left(a-1\right)}+\frac{1}{2\left(1-a\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)

\(=\left[\frac{\left(a+1\right)^2}{2\left(a-1\right)\left(a+1\right)}-\frac{1}{2\left(a-1\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)

\(=\frac{\left(a+1\right)^2-1}{2\left(a-1\right)\left(a+1\right)}.\frac{2\left(a+1\right)}{a+2}\)

\(=\frac{a\left(a+2\right)}{\left(a-1\right)\left(a+2\right)}\)

\(=\frac{a}{a-1}\)

c) \(\left|a\right|=3\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

+) Với a=3 thỏa mãn \(\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)nên thay a=3 vào P ta được:

( làm nốt)

TH kia tương tự