K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Muốn A là phân số tối giản thì ước chung lớn nhất (n+1;n-3)=1.

[(n-3)+4;n-3]=1.

=>n-3 không chia hết cho 2.

=>n khác 2

 Xong

21 tháng 2 2017

Ta có : n + 1 chai hết cho n - 3

<=> n - 3 + 4 chia hết cho n - 3

=> 4 chia hết cho n - 3

=> n - 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}

Ta có bảng :

n - 3-4-2-1124
n-112457
13 tháng 1 2017

a) n=4;5;7

b)n=4

c)n=7

17 tháng 3 2016

a) để n là phân số thì n-3 khác 0 nên n khác 3

vậy n là mọi số nguyên khác 3

b) n lẻ 

c) để A lớn nhất thì n-3 sẽ nhỏ nhất nên n-3=1 vậy n=4

k nha bạn

k cho mình mình k lại

29 tháng 2 2016

a) A thuộc Z
=> n + 1 chia hết cho n - 3

n - 3 + 4 chia hết cho n - 3

4 chia hết cho  n - 3

n - 3 thuộc U(4) = {-4 ; -2 ; -1 ; 1 ; 2; 4}

n thuộc {-1 ; 1 ; 2 ; 4 ; 5 ; 7}

26 tháng 3 2016

a) n-1-n+3 = 2

n-3 (Ư)2 = -1; 1; -2;2

n= 2; 4; 1 ; 5

b)  tuong tu;

n=2;4

29 tháng 4 2020

Đặt: ( n + 3 ; n - 2 ) = d  ( d là số tự nhiên )

=> \(\hept{\begin{cases}n+3⋮d\\n-2⋮d\end{cases}}\Rightarrow\left(n+3\right)-\left(n-2\right)⋮d\Rightarrow5⋮d\)

=> d = 1 hoặc d = 5 

Để A là phân số tối giản thì d = 1 => d khác 5 

+) Với d = 5 => \(\hept{\begin{cases}n+3⋮5\\n-2⋮5\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮5\\n-2⋮5\end{cases}\Rightarrow}\left(2n+6\right)-\left(n-2\right)⋮5\Rightarrow n+8⋮5\)

=> Tồn tại số nguyên k sao cho : n + 8 = 5k => n = 5k - 8 

=> n = 5k - 8 thì d = 5

=> n \(\ne\)5k - 8  thì d = 1 

Vậy n \(\ne\)5k - 8 thì A là phân số tối giản.

\(A=1+\frac{5}{n-2}\)(n khác 2)

Để A là phân số tối giản => \(\frac{5}{n-2}\)là phân số tối giản 

=> n-2 là số nguyên chẵn

=> n là số nguyên chẵn và n khác 2

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản