Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)
a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
n | 4 | 2 | 5 | 1 | 7 | -1 | 8 | -2 | 13 | -7 | 23 | -17 |
Vậy...
b, Để A tối giản <=> UCLN(20,n-3) = 1
=> n-3 không chia hết cho 20
=> n-3 khác 20k (k thuộc Z)
=> n khác 20k + 3
Vậy.....
a) Ta có :
\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên
\(\Rightarrow14\)\(⋮\)\(n-3\)
\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }
lập bảng ta có :
n - 3 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 4 | 2 | 5 | 1 | 10 | -4 | 17 | -11 |
b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1
\(\Leftrightarrow\)n - 3 không chia hết cho 14
\(\Rightarrow\)n - 3 \(\ne\)14k
\(\Rightarrow\)n \(\ne\)14k + 3
Để \(\frac{n+9}{n-6}\inℕ\)
\(\Rightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Ta có : Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ_{\left(15\right)}\)
\(\Rightarrow n-6\in\left\{1;3;5;15\right\}\)
Lập bảng xét các trường hợp :
\(n-6\) | \(1\) | \(3\) | \(5\) | \(15\) |
\(n\) | \(7\) | \(9\) | \(11\) | \(21\) |
Vậy \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n\in\left\{7;9;11;21\right\}\)
Để \(\frac{n+9}{n-6}\)là số nguyên
\(\Rightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Ta có :\(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)
n-6 | -1 | 1 | -3 | 3 | 5 | -5 | -15 | 15 |
n | 5 | 7 | 3 | 9 | 11 | 1 | -9 | 21 |