\(\frac{2n+1}{n-2}\)

a) Tìm n thuộc Z để A có giá trị nguyên .

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

\(A=\frac{n+1}{n-2}\)

\(A=\frac{n-2+3}{n-2}\)

\(A=1+\frac{3}{n-2}\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm3\right\}\)

đến đây lập bảng là xong

B là số nguyên thì n+1 chia hết n-2

(n+1)-(n-2)chia hết n-2

n+1-n+2chia hết n-2

3chia hết n-2

n-2 thuộc Ư(3)={-1;1;-3;3}

n thuộc {1;3;-1;5}

B=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2=1+3/n-2

để B lớn nhất 3/n-2 lớn nhất

nên n-2 bé nhất

n-2 là số nguyên dương bé nhất

 => n-2=1

     n=3  

25 tháng 8 2016

a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)

Ta có bảng sau:

  5n - 3  -6  -3  -2  -1   1  2   3  6
    n  -0,6  0 0,2 0,4 0,8  1  1,2  1,8

Mà n thuộc Z  => n = { 0 ; 1 }

b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất  => \(\frac{6}{5n-3}\)lớn nhất 

=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z

=> 5n - 3 = 2  => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)  

Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:

\(A=2+3=5\)

Vậy giá trị lớn nhất của A là 5 khi x = 1

26 tháng 8 2016

a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)

                             \(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

                             \(=2+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)

\(\Rightarrow\frac{6}{5n-3}\in Z\)

\(\Rightarrow6\)chia hết cho\(5n-3\)

\(\Rightarrow5n-3\inƯ\left(6\right)\)

Ta có bảng sau :

       
       
       
5n-31-12-23-3
5n425160
n0,80,410,21,20

Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)

17 tháng 5 2016

Phân tích n+1/n+2 ra cho mình thôi cũng được 

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

9 tháng 3 2021

a, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n - 21-13-3
n315-1

b, Ta có :  \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}+1\ge1\)

Dấu ''='' xảy ra <=> n - 2 = 1 <=> n = 3

Vậy GTLN A là 1 khi n = 3