Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A nguyên < = > 2n + 7 chia hết cho n + 3
=> 2n + 6 + 1 chia hết cho n + 3
=> 2.(n + 3) + 1 chia hết cho n + 3
=> 1 chia hết cho n + 3
=> n + 3 thuộc Ư(1) = {-1; 1}
=> n thuộc {-4; -2}
Tổng: -4 + (-2) = -6.
Ta có : A = \(\frac{2n+7}{n+3}\)=\(\frac{2\left(n+3\right)+1}{n+3}\)= 2 + \(\frac{1}{n+3}\)
Do đó: Để A là số nguyên thì n + 3 \(\in\)Ư(1) = {-1;1}
=> n = -4, -2
1. a) Gọi a là ƯCLN của 2n+5 và n+3.
- Ta có: (n+3)⋮a
=>(2n+6)⋮a
Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a
=>1⋮a
=>a=1 hay a=-1.
- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.
b) -Để phân số B có giá trị là số nguyên thì:
\(\left(2n+5\right)⋮\left(n+3\right)\)
=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)
=>\(-1⋮\left(n+3\right)\).
=>\(n+3\inƯ\left(-1\right)\).
=>\(n+3=1\) hay \(n+3=-1\).
=>\(n=-2\) (loại) hay \(n=-4\) (loại).
- Vậy n∈∅.
1. a) Gọi `(2n +5 ; n + 3 ) = d`
`=> {(2n+5 vdots d),(n+3 vdots d):}`
`=> {(2n+5 vdots d),(2(n+3) vdots d):}`
`=> {(2n+5 vdots d),(2n+6 vdots d):}`
Do đó `(2n+6) - (2n+5) vdots d`
`=> 1 vdots d`
`=> d = +-1`
Vậy `(2n+5)/(n+3)` là phân số tối giản
b) `B = (2n+5)/(n+3)` ( `n ne -3`)
`B = [2(n+3) -1]/(n+3)`
`B= [2(n+3)]/(n+3) - 1/(n+3)`
`B= 2 - 1/(n+3)`
Để B nguyên thì `1/(n+3)` có giá trị nguyên
`=> 1 vdots n+3`
`=> n+3 in Ư(1) = { 1 ; -1}`
+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)
+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)
Vậy `n in { -2; -4}` thì `B` có giá trị nguyên
2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)
Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)
Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)
Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)` (học sinh)
Vì số học sinh của lớp `6A` không đổi nên ta có :
`7/3x + x = 3/2 (x+4) + x+4`
`=> 10/3 x = 3/2 x + 6 + x + 4`
`=> 10/3 x - 3/2 x -x = 10 `
`=> 5/6x = 10`
`=> x=12` (thỏa mãn điều kiện)
`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh
`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh
`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)
Vậy lớp `6A` có `40` học sinh
để 4/2n là số nguyên thi 4\(⋮\) 2n
=>2n\(\in\) Ư (4)
2n=1
n=1/2 loại
2n=2
n=2/2=1 chọn
2n=4
n=4/2=2 chọn
Giải câu b trước nha.
b) Ta có: A = 2n+2/2n = 2n/2n + 2/2n = 1 + 1/n
Có 1 là số nguyên => Để A là số nguyên thì 1/n là số nguyên
=> n = {-1;1}
Vậy n=1 hoặc n=-1 thì A là số nguyên.
a) Để A là phân số thì n khác 1 và -1 ( theo câu b )
\(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=\frac{2\left(n+3\right)}{n+3}+\frac{1}{n+3}=2+\frac{1}{n+3}\)
Để A là số nguyên thì \(\frac{1}{n+3}\)là số nguyên
=>1 chia hết cho n+3
=>n+3\(\in\)Ư(1)
=>n+3\(\in\){-1;1}
=>n\(\in\){-4;-2}
Vậy tổng các giá trị của n là (-4)+(-2)=-6