Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số đó là n + 1 và n + 3
Đặt ƯCLN(n+1,n+3) = d
Ta có: n + 1 chia hết cho d
n + 3 cũng chia hết cho d
=> (n+3) - (n+1) chia hết cho d
=> 2 chia hết cho d
\(d\inƯ\left(2\right)=\left\{1;2\right\}\)
Mà n+1 và n+3 là số lẻ nên không chia hết cho 2.
=> d = 1
Vậy 2 số lẻ liên tiếp là số nguyên tố cùng nhau.
Gọi UCLN(m; mn + 8) là d
=> m chia hết cho d => mn chia hết cho d
và mn + 8 chia hết cho d
Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}
Mà m lẻ và m chia hết cho d => d lẻ
Do đó d = 1
=> UCLN(m; mn + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
giả sử p<q<r
+) Nếu p=3
+) Nếu q=3
Xét số tự nhiên a không chia hết cho3 =>a=3k+1 hoặc a=3k+2 (k thuộc N*)
-với a=3k+1
-với a=3k+2
=>với a không chia hết cho 3
=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)
do đó p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3
=>p2+q2+r2 là hợp số
Vậy p=3;q=5;r=7
ai tích mình tích lại !!!
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
không có số nào đâu bạn vì theo khái niệm thì khi nhân một số nguyên tố với một số nguyên tố thì nó sẽ là hợp số vì khi đó nó đã có trên 2 ước rồi bạn
đúng quá đúng ko các bạn tick cho mình nhé
giả sử p<q<r
+) Nếu p=3
+) Nếu q=3
Xét số tự nhiên a không chia hết cho3 =>a=3k+1 hoặc a=3k+2 (k thuộc N*)
-với a=3k+1
-với a=3k+2
=>với a không chia hết cho 3
=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)
do đó p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3
=>p2+q2+r2 là hợp số
Vậy p=3;q=5;r=7
Lẻ + lẻ = chẵn => hợp số
tick đi rồi mình làm cho