K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

b) Ta có: \(a^2+a+1=a^2+2.\frac{1}{2}a+\frac{1}{4}+\frac{3}{4}\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall a\)

Vậy \(a^2+a+1>0\left(đpcm\right)\)

20 tháng 6 2019

\(a,\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=\left(x-4\right)^2+3>0\)

\(b,a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(c,a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

15 tháng 6 2017

\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)

\(\Leftrightarrow2ab-2b^2+2\sqrt{a^2-b^2}.\sqrt{2ab-b^2}>0\)

Cái nãy đúng vì \(0< b< a\)

Vậy có ĐPCM

16 tháng 6 2017

Chứng minh nhanh gọn lẹ

18 tháng 5 2017

Dễ thấy A > B > C nên để chứng minh A, B, C là ba cạnh của tam giác ta chỉ cần chứng minh B + C > A (BĐT tam giác).

hay chứng minh B + C - A > 0.

Bạn thế giá trị A, B, C vào chứng minh rất đơn giản.
 

19 tháng 5 2017

p>q>0 => p^2>pq=>2p^2>2pq => (p^2+q^2)+(p^2-q^2)>2pq

=>A+B>C ,đây là bđt tam giác nên ta có đpcm

4 tháng 12 2017

Ta có: \(VT=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ca}+\frac{c^2}{ca+cb}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

\(\RightarrowĐPCM\)

15 tháng 6 2020

Đặt \(f\left(a,b,c\right)=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)và \(t=\frac{a+b}{2}\)

Khi đó thì \(f\left(t,t,c\right)=\frac{t}{t+c}+\frac{t}{t+c}+\frac{c}{2t}=\frac{2t}{t+c}+\frac{c}{2t}\)

Ta có: \(f\left(a,b,c\right)=\frac{\left(a^2+b^2\right)+c\left(a+b\right)}{c^2+ab+c\left(a+b\right)}+\frac{c}{a+b}\)\(=\frac{4\left(a^2+b^2\right)+4c\left(a+b\right)}{4c^2+4ab+4c\left(a+b\right)}+\frac{c}{a+b}\)

\(\ge\frac{2\left(a+b\right)^2+4c\left(a+b\right)}{4c^2+\left(a+b\right)^2+4c\left(a+b\right)}+\frac{c}{a+b}\)\(=\frac{8t^2+8tc}{4c^2+4t^2+8tc}+\frac{c}{2t}\)

\(=\frac{2t^2+2tc}{c^2+t^2+2tc}+\frac{c}{2t}=\frac{2t\left(t+c\right)}{\left(t+c\right)^2}+\frac{c}{2t}\)\(=\frac{2t}{t+c}+\frac{c}{2t}=f\left(t,t,c\right)\)

Do đó \(f\left(a,b,c\right)\ge f\left(t,t,c\right)\)

Ta cần chứng minh: \(f\left(t,t,c\right)=\frac{2t}{t+c}+\frac{c}{2t}\ge\frac{3}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(t-c\right)^2}{2t\left(t+c\right)}\ge0\)(đúng)

Đẳng thức xảy ra khi a = b = c

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.

28 tháng 4 2016

1. *nếu x>=1.Ta có:A=x5(x3-1)+x(x-1)>0

    *nếu x<1. ta có: A=x8 +x (1-x3)+ (1-x)>0  (từng số hạng >o)

   

28 tháng 4 2016

ai là bạn cũ của NICK "Kiệt" thì kết bạn với tui ! nhất là những người có choi Minecraft !

19 tháng 1 2020

thiếu đề

19 tháng 1 2020

Vãi cả đề

18 tháng 6 2018

Áp dụng bđt AM-GM:

\(x^2+\dfrac{1}{x}\ge2\sqrt{x}\)

\(y^2+\dfrac{1}{y}\ge2\sqrt{y}\)

Cộng theo vế: \(VT=x^2+y^2+\dfrac{1}{x}+\dfrac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)=VP\)

\("="\Leftrightarrow x=y=1\)