K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

1/

Ta có:  \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)

              \(\sqrt{24}^2\)= 24 = 16 + 8

Vì:     \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)

Nên:   \(\sqrt{15}< 4\)

=>       \(2\sqrt{15}< 8\)

=>       \(16+2\sqrt{15}< 24\)

=>      \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)

Vậy     \(1+\sqrt{15}< \sqrt{24}\)

2/

b/    \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)

<=> \(3x-7\sqrt{x}-20=0\)

<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)

<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)

<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)

<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)

<=>   \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)

<=>   \(x=16\)

Vậy S=\(\left\{16\right\}\)

c/    \(1+\sqrt{3x}>3\)

<=> \(\sqrt{3x}>2\)

<=>   \(3x>4\)

<=>  \(x>\frac{4}{3}\)

d/      \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))

<=>   \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>   \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>    \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)

<=>    \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\) 

<=>    \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)

<=>    \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

<=>     \(x+1=0\)  hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)

<=>     \(x=-1\)(loại)  hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)

Vậy S={  9 }

NV
23 tháng 10 2020

a.

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Đặt \(\sqrt{\frac{x+1}{x-1}}=t>0\) ta được:

\(t-\frac{1}{t}=\frac{3}{2}\Leftrightarrow2t^2-3t-2=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\frac{x+1}{x-1}=4\Leftrightarrow x+1=4x-4\Leftrightarrow x=...\)

b.

ĐKXĐ: \(x>-\frac{2}{5}\)

\(\Leftrightarrow3x+5x+2=\left(3-x\right)\sqrt{5x+2}\)

\(\Leftrightarrow8x+2=\left(3-x\right)\sqrt{5x+2}\)

Đặt \(\sqrt{5x+2}=t>0\Rightarrow x=\frac{t^2-2}{5}\)

\(\frac{8\left(t^2-2\right)}{5}+2=\left(3-\frac{t^2-2}{5}\right)t\)

\(\Leftrightarrow t^3+8t^2-17t-6=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^2+10t+3\right)=0\)

\(\Rightarrow t=2\Rightarrow\sqrt{5x+2}=2\Rightarrow5x+2=4\Rightarrow...\)

5 tháng 8 2020

\(A=1+\frac{2}{\sqrt{x}+1};B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)

đề bài là thế này ạ!?