K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 5 2019

Phương trình hoành độ giao điểm: \(x^2+2ax+4a=0\)

\(\Delta'=a^2-4a>0\Rightarrow\left[{}\begin{matrix}a< 0\\a>4\end{matrix}\right.\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2a\\x_1x_2=4a\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=3\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=9\)

\(\Leftrightarrow4a^2-8a+8\left|a\right|=9\)

- Với \(a>0\) \(\Rightarrow4a^2=9\Rightarrow a^2=\frac{9}{4}\Rightarrow a=\frac{3}{2}< 4\left(l\right)\)

- Với \(a< 0\Rightarrow4a^2-16a-9=0\Rightarrow\left[{}\begin{matrix}a=-\frac{1}{2}\\a=\frac{9}{2}>0\left(l\right)\end{matrix}\right.\)

Vậy \(a=-\frac{1}{2}\)

Phương trình đường thẳng có dạng : \(y=ax+b\left(a\ne0\right)\)

Đường thẳng đi qua \(A\left(1;1\right)\Rightarrow1=a+b\)

Mà đường thẳng cắt (d2) tạo thành tam giác vuông

\(\Rightarrow4a=-1\Rightarrow a=-\dfrac{1}{4}\)

Ta có pt : \(1=b-\dfrac{1}{4}\Leftrightarrow b=\dfrac{5}{4}\)

Vậy phương trình đường thẳng là \(y=-\dfrac{1}{4}x+\dfrac{5}{4}\)

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

20 tháng 2 2018

x2 = 5x1 <=> x2 + x1 = 6x1 <=> x1 = (x1 + x2)/6

(theo vi ét thì x1 + x2 bằng gì đó, thay vào)

tiếp theo thay x1 tìm được theo m vừa rồi vào tích x1* x2. rồi giải pt đó. hiểu ko?