Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm
\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)
để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu
khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)
- Xét pt hoành độ gd....:
x2-(m-1)x-m-4=0 (1)
- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau
- \(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)
Vậy với m>-4 thì ....
xem lại đầu bài đi bạn ơi, phương trình đường thẳng sai rồi ...
Xét phương trình hoành độ giao điểm
\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)
Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có
\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)
theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)
\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)
\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)
Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)
1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0)
<=> \(0=6+b\Leftrightarrow b=-6\)
2, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-1\right)x-m+4=0\)
Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay
\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)
câu a.
hoành độ giao điemr của ( d) và ( P) là no pt ta có:
x^2=(m-2)x+3
<=> x^2-(m-2)x-3=0
thay m=5/2 ta được:
x^2-(5/2-2)x-3=0
<=> x^2-1/2x-3=0
theo đenta bn tự tính tiweeps ha
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung thì m^2+m<0
=>-1<m<0