Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)
<=> \(5=4m-3\Leftrightarrow m=2\)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2mx-2m+3=0\)
\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)
Để (P) tiếp xúc (d) thì pt có nghiệm kép khi
\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)
a: Thay x=1 vào (P), ta được:
y=1^2=1
Thay x=1 và y=1 vào (d), ta được:
m+n=1
=>m=1-n
PTHĐGĐ là:
x^2-mx-n=0
=>x^2-x(1-n)-n=0
=>x^2+x(n-1)-n=0
Δ=(n-1)^2-4*(-n)
=n^2-2n+1+4n=(n+1)^2>=0
Để (P) tiếp xúc (d) thì n+1=0
=>n=-1
b: n=-1 nên (d): y=2x-1
(d1)//(d) nên (d1): y=2x+b
Thay x=2 vào y=x^2, ta được:
y=2^2=4
PTHĐGĐ là:
x^2-2x-b=0
Δ=(-2)^2-4*1*(-b)=4b+4
Để (d1) cắt (P) tại 2 điểm pb thì 4b+4>0
=>b>-1
Vì P đi qua điểm A
Thay vèo ta cóa \(-1=a.4\Rightarrow a=-\frac{1}{4}\)
Ý b thiếu dữ kiện à bn ơi ?
Do đường thẳng đã cho đi qua A(−1,0)A(−1,0) nên
0=−a+b0=−a+b
<−>a=b<−>a=b
Xét ptrinh hoành độ giao điểm
12x2=ax+a12x2=ax+a
<−>x2−2ax−2a=0<−>x2−2ax−2a=0
Do hai đồ thị tiếp xúc nên ptrinh trên có 1 nghiệm duy nhất, tức là Δ′=0Δ′=0 hay
a2+2a=0a2+2a=0
<−>a(a+2)=0<−>a(a+2)=0
Vậy a=0a=0 hoặc a=−2a=−2
Do a≠0a≠0 nên a=−2a=−2.
Vậy y=−2x−2y=−2x−2
1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)
\(\Rightarrow2x^2-ax-b=0\left(I\right)\)
Mà (P) tiếp xúc với d .
Nên PT ( I ) có duy nhất một nghiệm .
\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)
Lại có : d đi qua A .
\(\Rightarrow b+0a=-2=b\)
\(\Rightarrow a=4\)
2. Tương tự a
3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)
\(\Rightarrow2x^2-2m-1=0\)
Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)
=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)
ta có pt hoảnh độ giao điểm: \(ax^2=x-1\Leftrightarrow ax^2-x+1=0\)
P tiếp xúc d <=> PT trên có nghiệm kép <=> \(\Delta=0\Leftrightarrow1-4a=0\Leftrightarrow a=\frac{1}{4}\)
Do (d) qua A(1;1) \(\Rightarrow a+b=1\Leftrightarrow b=-a+1\Rightarrow y=ax-a+1\)
Phương trình hoành độ giao điểm:
\(x^2=ax-a+1\Leftrightarrow x^2-ax+a-1=0\) (1)
(P) tiếp xúc (d) khi (1) có nghiệm kép
\(\Leftrightarrow\Delta=0\Leftrightarrow a^2-4\left(a-1\right)=0\Leftrightarrow a=2\)
Vậy \(\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)