K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2020

Do (d) qua A(1;1) \(\Rightarrow a+b=1\Leftrightarrow b=-a+1\Rightarrow y=ax-a+1\)

Phương trình hoành độ giao điểm:

\(x^2=ax-a+1\Leftrightarrow x^2-ax+a-1=0\) (1)

(P) tiếp xúc (d) khi (1) có nghiệm kép

\(\Leftrightarrow\Delta=0\Leftrightarrow a^2-4\left(a-1\right)=0\Leftrightarrow a=2\)

Vậy \(\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

26 tháng 3 2022

a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)

<=> \(5=4m-3\Leftrightarrow m=2\)

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-2m+3=0\)

\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)

Để (P) tiếp xúc (d) thì pt có nghiệm kép khi 

\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)

a: Thay x=1 vào (P), ta được:

y=1^2=1

Thay x=1 và y=1 vào (d), ta được:

m+n=1

=>m=1-n

PTHĐGĐ là:

x^2-mx-n=0

=>x^2-x(1-n)-n=0
=>x^2+x(n-1)-n=0

Δ=(n-1)^2-4*(-n)

=n^2-2n+1+4n=(n+1)^2>=0

Để (P) tiếp xúc (d) thì n+1=0

=>n=-1

b: n=-1 nên (d): y=2x-1

(d1)//(d) nên (d1): y=2x+b

Thay x=2 vào y=x^2, ta được:

y=2^2=4

PTHĐGĐ là:

x^2-2x-b=0

Δ=(-2)^2-4*1*(-b)=4b+4

Để (d1) cắt (P) tại 2 điểm pb thì 4b+4>0

=>b>-1

10 tháng 5 2020

Vì P đi qua điểm A 

Thay vèo ta cóa \(-1=a.4\Rightarrow a=-\frac{1}{4}\)

Ý b thiếu dữ kiện à bn ơi ?

í b thiếu dữ kiện

20 tháng 4 2020

Do đường thẳng đã cho đi qua A(−1,0)A(−1,0) nên

0=−a+b0=−a+b

<−>a=b<−>a=b

Xét ptrinh hoành độ giao điểm

12x2=ax+a12x2=ax+a

<−>x2−2ax−2a=0<−>x2−2ax−2a=0

Do hai đồ thị tiếp xúc nên ptrinh trên có 1 nghiệm duy nhất, tức là Δ′=0Δ′=0 hay

a2+2a=0a2+2a=0

<−>a(a+2)=0<−>a(a+2)=0

Vậy a=0a=0 hoặc a=−2a=−2

Do a≠0a≠0 nên a=−2a=−2.

Vậy y=−2x−2y=−2x−2

3 tháng 2 2021

1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)

\(\Rightarrow2x^2-ax-b=0\left(I\right)\)

Mà (P) tiếp xúc với d .

Nên PT ( I ) có duy nhất một nghiệm .

\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)

Lại có : d đi qua A .

\(\Rightarrow b+0a=-2=b\)

\(\Rightarrow a=4\)

2. Tương tự a

3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)

\(\Rightarrow2x^2-2m-1=0\)

Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)

=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)

29 tháng 6 2015

ta có pt hoảnh độ giao điểm: \(ax^2=x-1\Leftrightarrow ax^2-x+1=0\)

P tiếp xúc d <=> PT trên có nghiệm kép <=> \(\Delta=0\Leftrightarrow1-4a=0\Leftrightarrow a=\frac{1}{4}\)