Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm là nghiệm của phương trình:
x^2 = 2x - n + 3
<=> x^2 - 2x + n - 3 = 0 (1)
có: \(\Delta'=1^2-\left(n-3\right)=4-n\)
(P) cắt (d) <=> (1) có nghiệm <=> \(\Delta'\ge0\Leftrightarrow n\le4\)(@)
Áp dụng định lí viet ta có: x1 . x2 = n - 2 (2) ; x1 + x2 = 2(3)
Theo bài ra ta có: \(x_1^2-2x_2+x_1x_2=16\)
<=> \(2x_1-n+3-2x_2+x_1x_2=16\)
<=> \(2x_1-n+3-2x_2+n-3=16\)
<=> \(x_1-x_2=8\)(4)
Từ (3); (4) => x1 = 5; x2 = -3
Thế vào (2) ta có: 5.(-3) = n - 3 <=> n = -12
1.
\(\Delta=m^2-4\left(2m-5\right)=\left(m-4\right)^2+4>0;\forall m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-5\end{matrix}\right.\)
Để biểu thức đề bài xác định \(\Rightarrow m\ne-2\)
\(A=\frac{x_1x_2}{x_1+x_2+2}=\frac{2m-5}{m+2}=2-\frac{9}{m+2}\)
\(A\in Z\Rightarrow\frac{9}{m+2}\in Z\Rightarrow m+2=Ư\left(9\right)\)
\(\Rightarrow m+2=\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow m=\left\{-11;-5;-3;-1;1;7\right\}\)
2.
Hệ pt tọa độ giao điểm A của d1 và d2: \(\left\{{}\begin{matrix}x+y=2\\-2x+y=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d qua A
\(\Leftrightarrow1=\left(m-2\right).1+m+3\Rightarrow2m=0\Rightarrow m=0\)
b/ Gọi \(B\left(x;y\right)\) là điểm cố định mà d luôn đi qua
\(\Leftrightarrow y=\left(m-2\right)x+m+3\) ; \(\forall m\)
\(\Leftrightarrow m\left(x+1\right)+\left(-2x-y+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\-2x-y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
Vậy d luôn đi qua \(B\left(-1;5\right)\)
Dăm ba cái bài này . Ui người ta nói nó dễ !!!
a ) song song \(\Leftrightarrow\hept{\begin{cases}a=a^,\\b\ne b^,\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=\frac{1}{2}\\m\ne-\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\m\ne-\frac{1}{2}\end{cases}}\)
b ) Vì ( 1 ) cắt trục hoành tại điểm A có hoành độ bằng 2 nên ta có : x = 2 ; y = 0
=> điểm A( 2 ; 0 )
Thay A vào ( 1 ) ta được : 0 = ( m - 1 ) . 2 + m
<=> 0 = 2m - 2 +m
<=> 0 + 2 = 2m + m
<=> 2 = 3m
<=> m = 2/3
c )
Gọi \(B\left(x_B;y_B\right)\) là điểm tiếp xúc của ( O ) và ( 1 )
Ta có bán kính của ( O ) là \(\sqrt{2}\) nên \(x_B=0;y_B=\sqrt{2}\)
=> \(B\left(0;\sqrt{2}\right)\)
Thay B vào ( 1 ) ta được : \(\sqrt{2}=\left(m-1\right).0+m\)
\(\Rightarrow m=\sqrt{2}\)
Tong cua 2 phan so la 2/9 Thuong cua 2 phan so la 4/3 Tim 2 phan so do
Đk: \(m\ne\frac{2}{3}\)
Gọi A và B là 2 điểm mà đồ thị hàm số \(y=\left(3m-2\right)x+5m^{\left(d\right)}\)cắt lần lượt trên trục tung và trục hoành.
\(\Rightarrow\hept{\begin{cases}A\left(0;-2\right)\\B\left(-1;0\right)\end{cases}}\)
Vì (d) đi qua A(0;-2) và B(-1;0) nên ta được hệ phương trình \(\hept{\begin{cases}\left(3m-2\right)\cdot0+5m=-2\\\left(3m-2\right)\cdot\left(-1\right)+5m=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5m=-2\\2-3m+5m=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}m=-\frac{2}{5}\\2m=-2\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}m=-\frac{2}{5}\\m=-1\end{cases}}\) (vô lí)
Vậy: không có giá trị của m thỏa mãn đề bài
Bài này em làm không biết có đúng không, mong các anh chị sửa cho em nhé!
Cho tiện, mọi người có thể sửa lỗi cho em bằng cách nhắn tin ạ!
Pt hoành độ giao điểm: \(x^2-mx-5=0\) (1)
Để (P) cắt d tại 2 điểm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt
Do \(a.c=1.\left(-5\right)=-5< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu
Theo Viet: \(x_1+x_2=m\)
\(\left\{{}\begin{matrix}x_1>x_2\\\left|x_1\right|< \left|x_2\right|\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\x_1^2< x_2^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\\left(x_1-x_2\right)\left(x_1+x_2\right)< 0\end{matrix}\right.\)
\(\Rightarrow x_1+x_2< 0\Rightarrow m< 0\)
Vậy \(m< 0\) thì pt có 2 nghiệm thỏa mãn
Bài 27:
Vì (d) đi qua A(-3;0) và B(0;6) nên ta có hệ:
0a+b=6 và -3a+b=0
=>b=6 và b=3a
=>a=2 và b=6
1) Thay x=0;y=1 vào (d)=>m=2
Hoành độ giao điểm là nghiệm của phương trình:\(x^2=x+m-1\)
\(x^2-x-m+1=0\)2 điểm phân biệt => \(\Delta>0\)
\(\Delta>0=>1-4.\left(-m+1\right)=4m-3>0=>m>\frac{3}{4}\)
Áp dụng hệ thức Vi-ét:
\(x_1+x_2=1;x_1x_2=-m+1\)
\(4.\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0=>4.\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+3=0\)
\(\Rightarrow\frac{4}{-m+1}+m-1+3=0=>\frac{4}{-m+1}+m-2=0=>m^2-3m-2=0\)
Dùng công thức nghiệm được \(\Rightarrow x_1=\frac{3-\sqrt{17}}{2}\left(KTM\right);x_2=\frac{3+\sqrt{17}}{2}\left(TM\right)\)
Vậy...
Lời giải:
PT hoành độ giao điểm của $(P)$ và $(d)$ là:
\(\frac{1}{2}x^2-(mx-\frac{1}{2}m^2+m+1)=0\)
\(\Leftrightarrow x^2-2mx+(m^2-2m-2)=0\)
Để hai đths cắt nhau tại hai điểm phân biệt thì pt phải có hai nghiệm phân biệt.
\(\Leftrightarrow \Delta'=m^2-(m^2-2m-2)>0\)
\(\Leftrightarrow m>-1\)
Áp dụng định lý Viete có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2m-2\end{matrix}\right.\)
Khi đó: \(2=|x_1-x_2|=\sqrt{(x_1-x_2)^2}\)
\(\Leftrightarrow 2=\sqrt{(x_1+x_2)^2-4x_1x_2}\)
\(\Leftrightarrow 2=\sqrt{4m^2-4(m^2-2m-2)}\)
\(\Leftrightarrow 2=\sqrt{8m+8}\)
\(\Rightarrow 4=8m+8\Rightarrow m=-\frac{1}{2}\) (thỏa mãn)
Vậy.....