K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1 tháng 6 2017
Bài này sử dựng định lý viet để chứng minh:
- Gọi phương trình đường thẳng (d) có hệ số góc a có dạng : \(y=ax+b\left(a\ne0\right)\); \(M\left(1,2\right)\)thuộc (d) nên : \(2=a+b\Rightarrow b=2-a\left(1\right)\). Xét phương trình hoành độ giao điểm có : \(x^2=ax+b\left(2\right)\)thế 1 vào 2 có \(x^2=ax+2-a\Leftrightarrow x^2-ax-\left(2-a\right)=0\)phương trình có : \(\Delta=a^2+4\left(2-a\right)=a^2-4a+8\)\(\Rightarrow\Delta=\left(a^2-4a+4\right)+4=\left(a-2\right)^2+4\ge4\forall a\) nên phương trình luôn có hai nghiệm phân biệt với mọi giá tri của \(a\ne0\)
- Khi đó parabol cắt d tại hai điểm A,B với A,B có hoành độ lần lượt là \(x_A,x_B\) theo vi ét ta có : \(\hept{\begin{cases}x_A+x_B=a\\x_Ax_B=-\left(2-a\right)\end{cases}}\)ta xét \(x_A+x_B-x_Ax_B=a+\left(2-a\right)=2\left(dpcm\right)\)
22 tháng 2 2022
a, Hoành độ giao điểm tm pt
\(\dfrac{x^2}{4}+m\left(x-1\right)-2=0\)
\(\Leftrightarrow x^2+4m\left(x-1\right)-8=0\)
\(\Leftrightarrow x^2+4mx-4m-8=0\)
\(\Delta'=4m^2-\left(-4m-8\right)=4m^2+4m+8=4\left(m^2+m\right)+2\)
\(=4\left(m+\dfrac{1}{2}\right)^2+1>0\)
Vậy pt luôn có 2 nghiệm pb
hay (P) cắt (d) tại 2 điểm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{4m}{4}=-m\\x_Ax_B=\dfrac{-4m-8}{4}=-m-2\end{matrix}\right.\)
Ta có \(x_Ax_B\left(x_A+x_B\right)\)Thay vào ta được
\(-m\left(-m-2\right)=m^2+2m+1-1=\left(m+1\right)^2-1\ge-1\)
Dấu ''='' xảy ra khi m = -1
1, gọi ptđt có dạng y=ax+b có hệ số góc =k ta có pt dạng như sau: y=kx+b. ma theo đê ptđt d đi qua M nên tọa độ diểm M thỏa mãn pt: -2=k+b suy ra b=-2-k. vạy ptđt d là:y=kx-2-k
Còn câu 2,3 t đang nghĩ