K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:
Để $(P)$ đi qua $A(-\sqrt{3}, -3)$ thì:

$-3=(m-1)(-\sqrt{3})^2$

$\Leftrightarrow -3=(m-1).3\Leftrightarrow m-1=-1\Leftrightarrow m=0$

Khi đó:

$(P): y=-x^2$; $(d):y=2x-1$.

Hình vẽ đồ thị hàm số:

undefined

 

13 tháng 11 2021

Giải thích các bước giải:

a,Thay m=3m=3 vào (d)(d) ta đc: y=2x−3y=2x-3

có đường thẳng (d)(d) đi qua điểm B(0;−3)B(0;-3) và điểm A(32;0)A(32;0)

Có tam giác tạo bởi (d)(d) và 2 trục tọa độ là ΔOABΔOAB

Có OA=∣∣∣32∣∣∣=32;OB=|−3|=3OA=|32|=32;OB=|-3|=3

→SOAB=12.OA.OB=12.3/2.3=94(đvdt)→SOAB=12.OA.OB=12.3/2.3=94(đvdt)

Vậy SOAB=94đvdtSOAB=94đvdt

b,Để (d)(d) cắt đt y=−x+1y=-x+1 ⇔m−1≠−1⇔m-1≠-1

⇔m≠0⇔m≠0

Để (d) cắt đt y=−x+1y=-x+1 tại điểm có hoành độ bằng −2-2 

Thay x=−2x=-2 vào 2 công thức hàm số ta đc hpt:

{y=(m−1).(−2)−my=2+1=3{y=(m−1).(−2)−my=2+1=3

→{3=−2m+2−my=3{3=−2m+2−my=3 

↔{−3m=1y=3{−3m=1y=3 

↔{m=−13y=3{m=−13y=3

→m=−13→m=-13(thỏa mãn)

Vậy m=−13m=-13 

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

25 tháng 3 2022

1) y= 2x-4

HD: y=ax+b

.... song song: a=2 và b≠-1

..... A(1;-2)  => x=1 và y=-2 và Δ....

a+b=-2

Hay 2+b=-2 (thay a=2) 

<=> b=-4

KL:................

2) Xét PT hoành độ giao điểm của (P) và (d)

x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)

*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.

*) Theo hệ thức Viet ta có: 

S=x1+x2=2(m-1) và P=x1.x2=m-3

*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

Thay S và P vào M ta có:

\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)

 

Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)\(\dfrac{15}{4}\)

Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0