K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2023

a. Em tự giải

b. Từ giả thiết ta có \(A\left(-2;1\right)\) và \(B\left(4;4\right)\)

Gọi phương trình (d) có dạng \(y=ax+b\), do (d) qua A và B nên:

\(\left\{{}\begin{matrix}-2a+b=1\\4a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x+2\)

c. Câu này có vài cách giải cho lớp 9, cách nhanh nhất là sử dụng tính chất tiếp tuyến.

Từ M kẻ \(MH\perp AB\Rightarrow S_{ABM}=\dfrac{1}{2}MH.AB\)

Do AB cố định \(\Rightarrow S_{max}\) khi \(MH_{max}\)

Gọi \(d_1\) là đường thẳng song song d và tiếp xúc (P), gọi C là tiếp điểm \(d_1\) và (P)

Do \(d_1\) song song (d) nên pt có dạng: \(y=\dfrac{1}{2}x+b\)

Phương trình hoành độ giao điểm \(d_1\) và (P):

\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+b\Rightarrow x^2-2x-4b=0\) (1)

Do \(d_1\) tiếp xúc (P) \(\Rightarrow\left(1\right)\) có nghiệm kép

\(\Rightarrow\Delta'=1+4b=0\Rightarrow b=-\dfrac{1}{4}\)

Thế vào (1) \(\Rightarrow x_C^2-2x_C+1=0\Rightarrow x_C=1\Rightarrow y_C=\dfrac{1}{4}\) \(\Rightarrow C\left(1;\dfrac{1}{4}\right)\)

Từ C kẻ \(CK\perp d\)

Giả sử HM kéo dài cắt \(d_1\) tại D \(\Rightarrow\) tứ giác CKHD là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông)

\(\Rightarrow CK=DH\)

Mà \(DH=MH+MD\ge MH\Rightarrow CK\ge MH\)

\(\Rightarrow MH_{max}=CK\) khi M trùng C

Hay \(M\left(1;\dfrac{1}{4}\right)\)

NV
20 tháng 4 2023

loading...

13 tháng 3 2022

a)Hoành độ giao điểm của (P)và (d) là:

        \(\frac{1}{2}x^2=x+4\)

\(\Leftrightarrow x^2=2x+8\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)

Thay \(x=-2\)vào (d) ta được:

     \(y=-2+4=2\)

Thay \(x=4\)vào (d)ta được:

    \(y=4+4=8\)

Vậy \(A\left(-2;2\right),B\left(4;8\right)\)hoặc \(A\left(4;8\right),B\left(-2;2\right)\)

b)Mk ko bt làm

19 tháng 4 2017

a. Vẽ được rồi nên thôi

Hai điểm  A(-2, 2) và B(1, 1/2)

b. Đường thẳng AB có PT: x + 2y - 2 = 0.

c. Diện tích tam giác ABC = \(\frac{1}{2}\)AB x d(C/AB)

AB cố định. => Diện tích tam giác ABC lớn nhất khi d(C/AB) lớn nhất

Điểm C có tọa độ (x; \(\frac{x^2}{2}\))

d(C/AB) = \(\frac{\left|x+2\frac{x^2}{2}-2\right|}{\sqrt{1^2+2^2}}\)

d(C/AB) đạt max khi \(\left|x+x^2-2\right|\) đạt max (vì C thuộc cung AB nên -2 < x < 1)

Ta có x2 + x - 2 = (x + 2)(x - 1)

với -2 < x < 1 => x2 + x - 2 < 0

=> \(\left|x^2+x-2\right|\)= -x2 - x + 2 (khi 2- < x < 1)

Vậy, d(C/AB) đạt max khi -x2 - x + 2 đạt max (khi 2- < x < 1)

-x2 -x + 2 = -(x + \(\frac{1}{2}\))+ \(\frac{1}{4}\) + 2

= -(x +\(\frac{1}{2}\))+ 9/4 >= 9/4

Vậy, d(C/AB) đạt max khi x = -\(\frac{1}{2}\)

Thay x = \(-\frac{1}{2}\)vào (P): y = \(\frac{x^2}{2}\)

Vậy, Điểm C: (\(-\frac{1}{2}\); \(\frac{1}{8}\))