K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 7 2019

Lời giải:

a)

PT hoành độ giao điểm:

\(x^2-(2x+m^2+1)=0\)

\(\Leftrightarrow x^2-2x-(m^2+1)=0(*)\)

Ta thấy \(\Delta'_{(*)}=1+(m^2+1)>0, \forall m\in\mathbb{R}\)

Do đó PT $(*)$ luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

Hay (d) luôn cắt (P) tại 2 điểm phân biệt A,B với mọi $m\in\mathbb{R}$ (đpcm)

b)

Với $x_A,x_B$ là hoành độ của $A,B$ thì $x_A,x_B$ là nghiệm của $(*)$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_A+x_B=2\\ x_Ax_B=-(m^2+1)\end{matrix}\right.\)

Khi đó:
\(x_A^2+x_B^2=14\)

\(\Leftrightarrow (x_A+x_B)^2-2x_Ax_B=14\)

\(\Leftrightarrow 2^2+2(m^2+1)=14\)

\(\Leftrightarrow m^2=4\Rightarrow m=\pm 2\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)

PT hoành độ giao điểm:

\(x^2-(2x+m^2+1)=0\)

\(\Leftrightarrow x^2-2x-(m^2+1)=0(*)\)

Ta thấy \(\Delta'_{(*)}=1+(m^2+1)>0, \forall m\in\mathbb{R}\)

Do đó PT $(*)$ luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

Hay (d) luôn cắt (P) tại 2 điểm phân biệt A,B với mọi $m\in\mathbb{R}$ (đpcm)

b)

Với $x_A,x_B$ là hoành độ của $A,B$ thì $x_A,x_B$ là nghiệm của $(*)$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_A+x_B=2\\ x_Ax_B=-(m^2+1)\end{matrix}\right.\)

Khi đó:
\(x_A^2+x_B^2=14\)

\(\Leftrightarrow (x_A+x_B)^2-2x_Ax_B=14\)

\(\Leftrightarrow 2^2+2(m^2+1)=14\)

\(\Leftrightarrow m^2=4\Rightarrow m=\pm 2\)

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)

cậu có chép thiếu đề bài ko đấy

xem lại hộ tớ vs

#mã mã#

12 tháng 5 2019

cậu nên giải bài này hộ tớ nha

23 tháng 5 2018

a) Để (d) song song với (d') thì \(\hept{\begin{cases}2=2m^2\\m^2+1\ne m^2+m\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne1\end{cases}\ne}m=-1}\)

b) Phương trình hoành độ giao điểm giữa (P) và (d) là:

 \(x^2=2x+m^2+1\)
\(\Leftrightarrow x^2-2x-\left(m^2+1\right)=0\)
\(\Delta'=1+\left(m^2+1\right)=m^2+2>0\)
=> Phương trình luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B (đpcm)

c) Ta có:
\(x_A^2+x_B^2=\left(x_A+x_B\right)^2-2x_Ax_B=14\)(1)
Theo ta-let ta có:
\(\hept{\begin{cases}x_A+x_B=2\\x_A.x_B=-m^2-1\end{cases}}\)

Phương trình (1) trở thành:
\(2^2-2.\left(-m^2-1\right)=14\)
\(\Rightarrow m=\pm2\)
 

23 tháng 5 2018

CẢM ƠN BAN HẢI NHIỀU NHA !