Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét (O) có, ^AMB=^ANB=^NBM=^NAM=90 độ ( góc nội tiếp chắn nửa đt)
Xét tứ giác ANBM có : ^AMB=^ANB=^NBM=90 độ (cmt)
=> TG ANBM là hcn
1) gọi đường thẳng cần tìm là y=ax+b(d1)
vì đt d1 vuông góc vs đt y=2x-1 nên:
a.2=-1 <=> a= \(\dfrac{-1}{2}\)
vì đt d1 đi qua điểm M (-1;1) nên ta có pt:
1=\(\dfrac{-1}{2}\) .(-1)+b <=> b=\(\dfrac{1}{2}\)
Vậy h/s cần tìm là y=\(\dfrac{-1}{2}\) x+\(\dfrac{1}{2}\)
2) gọi đường thẳng cần tìm là y=ax+b(d)
vì đt d // đt y=3x+1 nên:
a=3
vì đt d cắt trục tung tại điểm có tung độ bằng 4 nên : b=4
vậy h/s cần tìm là y=3x+4
3) đk :m\(\ne\)2
vì đt y=2x-1 cắt tại tung độ tại điểm có tung độ bằng -x nên ta có pt :
-x=2x-1 <=> x=\(\dfrac{1}{3}\)
Ta có đt y=mx+1 cắt tại tung độ tại điểm có tung độ bằng -x nên ta có pt :
-\(\dfrac{1}{3}\) =m.\(\dfrac{1}{3}\) +1 <=> m=-4 (tmđk )
Vậy để y=mx+1 va y=2x-1 cắt nhau tại điểm thuộc y=-x thì m= -4
A B C O H D E F P Q M N
a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ
Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).
b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).
c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN
Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).
d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)
Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)
Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)
Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)
Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).