K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

gợi ý nhé

để P và d tiếp xúc nhau thì  pt hoành độ : mx2-4x+5=0 phải có nghiệm duy nhất ( tức là đenta phải bằng 0) 

sau khi tìm ra m thay vào pt đã cho thì bấm máy tính cho ra nghiệm cần tìm rồi thay x đã tìm đc vào d hoặc P đều đc

30 tháng 5 2021

Xét pt hoành độ gđ của (P) và (d) có:

\(2x^2=mx+1\)

\(\Leftrightarrow2x^2-mx-1=0\) (1)

Để (P) và (d) tiếp xúc <=> Pt (1) có nghiệm kép <=>\(\Delta=0\)<=> \(m^2-4.2\left(-1\right)=0\) <=> \(m^2+8=0\) (vô nghiệm)

Vậy không tồn tại m để (d) và (P) tiếp xúc

18 tháng 4 2023

Ptr hoành độ của `(P)` và `(d)` là:

    `2x^2=mx-2`

`<=>2x^2-mx+2=0`   `(1)`

Ptr `(1)` có: `\Delta=(-m)^2-4.2.2=m^2-16`

`(d)` tiếp xúc với `(P)<=>` Ptr `(1)` có nghiệm kép

      `<=>\Delta=0<=>m^2-16=0<=>m=+-4`

`@m=4=>2x^2-4x+2=0<=>x=1=>y=2.1^2=2`

      `=>` Giao điểm là `(1;2)`

`@m=-4=>2x^2+4x+2=0<=>x=-1=>y=2.(-1)=2`

     `=>` Giao điểm là `(-1;2)`

7 tháng 5 2021

a) vẽ bạn tự vẽ nha

b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)

\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)

\(\Delta^,=4+4m\)

Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)

\(\Leftrightarrow4+4m=0\)

\(\Leftrightarrow m=-1\)

Thay m=-1 vào pt (1) ta được : 

\(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\)

\(\Rightarrow y=\frac{1}{4}.2^2=1\)

Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y) 

=> tọa độ tiếp điểm là \(A\left(2;1\right)\)

3 tháng 2 2021

1. Ta có đồ thị :

2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)

Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)

- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)

\(\Leftrightarrow m=-1\)

3. Có phương trình hoành độ giao điểm :

\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)

\(\Rightarrow x=1\)

\(\Rightarrow y=1\)

Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)

Phương trình hoành độ giao điểm là: 

\(-x^2=2mx+3-m\)

\(\Leftrightarrow-x^2-2mx-3+m=0\)

\(\Delta=4m^2+4\cdot1\cdot\left(m-3\right)=4m^2+4m-12=4m^2+4m+1-13\)

\(\Leftrightarrow\Delta=\left(2m+1\right)^2-13\)

Để (P) tiếp xúc với (d) thì \(\left(2m+1\right)^2=13\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1=\sqrt{13}\\2m+1=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{13}-1}{2}\\m=\dfrac{-\sqrt{13}-1}{2}\end{matrix}\right.\)

20 tháng 2 2021

Bạn ơi còn tìm toạ độ tiếp điểm nữa mà bạn. Bạn giúp mình được không

Phương trình hoành độ giao điểm là:

\(x^2-2x-m^2-m+3=0\)

\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)

\(=4+4m^2+4m-12=4m^2+4m-8\)

\(=4\left(m+2\right)\left(m-1\right)\)

Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0

=>m=-2(loại) hoặc m=1(nhận)

NV
23 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-x^2=2mx-3m+4\Leftrightarrow x^2+2mx-3m+4=0\) (1)

(P) tiếp xúc (d) khi và chỉ khi (1) có nghiệm kép

\(\Leftrightarrow\Delta'=m^2-\left(-3m+4\right)=0\Leftrightarrow m^2+3m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-4\end{matrix}\right.\)

Với \(m=1\Rightarrow x_{1,2}=-\dfrac{2m}{2}=-m=-1\)

Với \(m=-4\Rightarrow x_{1,2}=-m=4\)

a: Khi m=3 thì (d): y=2x+3

Phương trình hoành độ giao điểm là:

\(x^2-2x-3=0\)

=>(x-3)(x+1)=0

=>x=3 hoặc x=-1

Khi x=3 thì y=9

Khi x=-1 thì y=1

b: Phương trình hoành độ giao điểm là:

\(x^2-2x-m=0\)

Δ=4+4m

Để (P) tiếp xúc với (d) thì 4m+4=0

hay m=-1