K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 1 2017

Lời giải:

a) Gọi \((x_o,y_o)\) là tọa độ điểm cố định mà $(d)$ đi qua

Khi đó \(y_o=mx_o+1\) phải luôn đúng với mọi \(m\in\mathbb{R}\)

\(\Rightarrow \left\{\begin{matrix} x_o=0\\ 1-y_o=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_o=0\\ y_o=1\end{matrix}\right.\)

Vậy $(d)$ luôn đi qua điểm cố định $(0;1)$

b) Vì hai điểm $A,B$ thuộc đồ thị \(y=x^2\) nên tung độ của chúng luôn lớn hơn hoặc bằng $0$. Do đó, $A,B$ luôn nằm cùng phía so với $Ox$, chắc bạn nhầm với $Oy$ rồi.

Phương trình hoành độ giao điểm \(x^2-mx-1=0\)

Ta có \(\Delta=m^2+4>0\) nên phương trình luôn có hai nghiệm phân biệt, tức là $(d)$ cắt $(P)$ tại hai điểm phân biệt $x_1,x_2$ thỏa mãn \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=-1\end{matrix}\right. (1)\).

\(x_1x_2=-1<0\Rightarrow x_1,x_2\) trái dấu. Do đó $A,B$ nằm khác phía so với $Oy$

c) Theo $(1)$ ta có: \(AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(x_1-x_2)^2+(mx_1-mx_2)^2}=\sqrt{(m^2+1)(m^2+4)}\)

\(d(O,AB)=\frac{|1|}{\sqrt{m^2+1}}\)\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=2\Leftrightarrow \sqrt{m^2+4}=4\)

\(\Leftrightarrow m=\pm\sqrt{12}\)

5 tháng 1 2017

a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua

=> yA = mxA + 1                              với mọi m

=> xA.m + 1 - yA = 0                        với mọi m

<=> xA = 0 và 1 - yA = 0

<=> xA = 0 ; yA = 1 Vậy A(0;1) 

b) Phương trình hoành đọ giao điểm của (P) và (d) là:

x^ 2 = mx + 1

<=> x 2 - mx - 1 = 0

Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m

=> Pt có 2 nghiệm pb với mọi m

=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B

 ta có: xAxB = -1 < 0

=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung 

26 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

7 tháng 6 2015

cj ơi, nó có trog câu hỏi tương tự rồi ạ, cô Loan giải rồi ạ!!^^

7 tháng 6 2015

b) Phương trình hoành đọ giao điểm của (P) và (d) là:

x2 = mx + 1 

<=> x2 - mx - 1  = 0 

$\Delta$Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m

=>  Pt có 2 nghiệm pb với mọi m

=>  (P) luôn cắt (d) tại 2 điểm phân biệt A;B 

Theo Vi - et ta  có: xAxB = -1 < 0

=>   x; xB trái dấu => A; B nằm khác phía so với trục tung

 

26 tháng 5 2015

a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua

=> yA = mxA + 1                với mọi m

=> xA.m + 1 - yA = 0        với mọi m

<=> xA = 0 và 1 - yA = 0

<=> xA = 0 ; yA = 1

Vậy A(0;1)

26 tháng 5 2015

b) Phương trình hoành đọ giao điểm của (P) và (d) là:

x2 = mx + 1 

<=> x2 - mx - 1  = 0 

\(\Delta\) = (-m)2 + 4 = m2 + 4 > 0 với mọi m

=>  Pt có 2 nghiệm pb với mọi m

=>  (P) luôn cắt (d) tại 2 điểm phân biệt A;B 

Theo Vi - et ta  có: xAxB = -1 < 0

=>   x; xB trái dấu => A; B nằm khác phía so với trục tung

26 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

8 tháng 4 2022

aPt hoành độ giao điểm là x2=mx+1

<=>x2-mx-1=0

\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)

=>đpcm

b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau

tính (d) giao trục OY tại K

=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra

29 tháng 5 2017

xem lại đầu bài đi bạn ơi,  phương trình đường thẳng sai rồi ...

29 tháng 5 2017

( d ) : y = 2mx+2

30 tháng 5 2017

Xét phương trình hoành độ giao điểm 

\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)

Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có

\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)

theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)

\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)

\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)

Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)

17 tháng 8 2017

Tam giac chưa vuông mà