K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2, 3, 4, 5, 6, 7 => Nếu số nguyên tố lớn hơn 3 thì khi chia cho8 thì phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia 8 dư 4 và dư 6)

=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 : 8 dư 1, 32 = 9 chia 8 dư 1, 52 = 25 chia 8 dư 1, 72 = 49 chia 8 dư 1)

Vậy cả p2 và q2 chia 8 dư 1 => \(p^2-q^2⋮8\)

Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bonhf phương số đó khi chia cho 3 dư 1 ( vì 12 : 3 dư 1; 2= 4 chia 3 dư 1)

Vậy cả p2 và q2 chia 8 dư 3 =>\(p^2-q^2⋮8\)

=> \(p^2-q^2\)đều chia hết cho 8 và 3, mà (8;3) = 1 (hai số nguyên tố cùng nhau) 

=> \(p^2-q^2⋮3\times8\)=>\(p^2-q^2⋮24\)

26 tháng 1 2016

ta có :(n-1).(n+1)=n.(n+1)-1.(n+1)=n.n+n-n-1=n mu 2 -1

vay n mu 2 -1 chia het cho n-1 va n+1 nen ko bao gio la so nguyen to vi n>2.vay n mu 2 tru 1 va n mu hai cong 1 ko dong thoi la so nguyen to

16 tháng 6 2016

a ) Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

16 tháng 6 2016

p<p+4 nguyen to => p<p+4 dang 3k +1

=>p+8 dang 3k+9

3k chia het cho 3

9 chia het cho 3 

=> 3k +9 là hợp số =>p +8 là hợp số

21 tháng 12 2016

Gọi a bằng ƯC ( m , mn + 8 )

Ta có: m chia hết cho a ( m lẻ => a lẻ )

=> mn chia hết cho a

Lại có: mn + 8 chia hết cho a

=> mn + 8 - mn chia hết cho a

=> 8 chia hết cho a

=> a  Ư ( 8 ) = { 1 ; 2 ; 4 ; 8 }

Vì a lẻ 

=> a = 1

=> ƯC ( mn ; mn + 8 ) = 1

=> m và mn + 8 là hai số nguyên tố cùng nhau.