Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hãy vào link sau nè:
https://olm.vn/hoi-dap/detail/17061171825.html
sẽ có lời giải đáp
1 số chính phương khi chia cho 3 dư 1 \(\Rightarrow\) p2 - q2 + r2 - s2 ⋮ 3
1 số chính phương khi chia cho 8 dư 0, 1 hoặc 4 mà p, q, r, s là số nguyên tố lớn hơn 3 nên p2 , q2 , r2 ,s2 chia 8 dư 1 (1 số lẻ chia cho 1 số chẵn thì số dư của nó là số lẻ) suy ra p2 - q2 + r2 - s2 ⋮8
Suy ra p2 - q2 + r2 - s2 ⋮24
P=p^2-q^2=(p^2-1)-(q^2-1)
Để cm P chia hết cho 24 thì cm P chia hết cho 3 và 8.
Cm chia hết cho 3
đặt p=3q+r(1<=r<=2). r=1=>p=3q+1
=>p-1=3q chia hết cho 3 r=2=>p=3q+2
=>p+1=3q+3 chia hết cho 3. => p^2-1 chia hết cho 3.
Chia hết cho 8 ta cm chia hết cho 2 và 4 giống kiểu ở trên ý bạn
Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Lời giải:
Nếu $p\vdots 3\Rightarrow p=3$
$\Rightarrow p^2+2=3^2+2=11$ là snt (thỏa mãn)
Khi đó: $p^3+3=3^3+3=30$ không là số nguyên tố.
Nếu $p\not\vdots 3$ thì $p^2$ là số chính phương không chia hết cho 3. Mà 1 scp khi chia 3 có dư bằng 0 hoặc 1
$\Rightarrow p^2$ chia 3 dư 1.
$\Rightarrow p^2+2\vdots 3$
Mà $p^2+2$ là snt nên $p^2+2=3\Rightarrow p=1$ (vô lý - loại)
Vậy $p=3$. Khi đó $p^3+3=30$ không là snt
Đề sai.