K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2

+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+ Vậy p có dạng 3k+2

Khi đó chia hết cho 3

Vậy 4p+1 là hợp số

tick nha

14 tháng 12 2015

a)Xét P =5k ( vì P là số nguyên tố)

 P+2=7 ; P+6 = 11 ; P+8 =13 ; P +14=19 (T/m)

Xét P =5k+1( k thuộc N)

P+14=5k+1+14 = 5k+15 chia hết cho 5(ko t/m)

Xét P=5k+2 

P + 8=5k+10 chia hêt cho 5 ( ko t/m)

Xét P=5k+3

P+2=5k+3=5k+5 chia hết cho 5 ( ko t/m)

Xét  P = 5k+4

P+6 =5k+4+6=5k+10 chia hết cho 5 ( ko t/m)

Vậy P = 5

 bài a này mik còn có cách giải khác nhưng dài hơn . 

14 tháng 12 2015

b) P là số nguyên tố > 3 nên  P có dạng : 3k+1 và 3k+2

TH1 : p= 3k+1 .Ta có:

2p+1 = 2(3k+1) = 6k+2+1 = 6k+3 chia hết cho 3 nên là hợp số ( loại)

TH2:p=3k+2 . Ta có:

2p+1 = 2(3k+2) = 6k+4+1=6k+5 ( là số nguyên tố theo đề bài ta chọn TH này)

Vậy 4p+1 = 4(3k+2)+1=12k+8+1 = 12k+9 . ta thấy 12k và 9 đều chia hết cho 3 nên(12k+9) là hợp số 

Do đó 4p+1 là hợp số ( đpcm)

mik làm bài a và b rùi,tick nhé

17 tháng 12 2023
Vì p là số nguyên tố lớn hơn 3 nên p \cancel{vdots} 3 ⇒ p có dạng 3k + 1 hoặc 3k + 2 ( k ∈ N** ) Xét p = 3k + 1 ⇒ 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 vdots 3 ( là hợp số ) ( Loại ) ⇒ p có dạng 3k + 2 ⇒ 4p + 1 = 4 . ( 3k  +2 ) + 1 = 12k + 8 + 1 = 12k + 9 vdots 3 ( là hợp số ) Vậy , 4p + 1 là hợp số .  
15 tháng 11 2015

Vì p là số nguyên tố lớn hơn 3 nên p có dạnh :3k+1;3k+2

+)Nếu p=3k+2=>4p+1=4(3k+2)+1=4.3k+8+1=4.3k+9 =3.(4k+3) chia hết cho 3

=>4p+1 là hợp số (trái với giả thiết,loại)

Vậy p=3k+1 =>2p+1=2(3k+1)+1=2.3k+2+1=2.3k+3=3.(2k+1) chia hết cho 3

=>2p+1 là hợp số (đpcm)

Lần này l-i-k-e cho mình tử tế nha

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$

Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$
Mà $2p+1>3$ nên $2p+1$ không là số nguyên tố (trái giả thiết)

Do đó $p=3k+2$. Khi đó:
$4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ với mọi $p>3$ nên $4p+1$ là hợp số.

Ta có đpcm.

9 tháng 9 2018

Ta có : 

p là số nguyên tố => p không chia hết cho 3 => 4p không chia hết cho 3

2p + 1 là số nguyên tố => 2p + 1 không chia hết cho 3 => 2. ( 2p + 1 ) = 4p + 2 không chia hết cho 3

Vì trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

=> trong 3 số 4p; 4p + 1; 4p + 2 có 1 số chia hết cho 3

mà 4p và 4p + 2 không chia hết cho 3

=> 4p + 1 chia hết cho 3

=> 4p + 1 là hợp số   

9 tháng 9 2018

Vì p là số nguyên tố > 3 => p có dạng 3k + 1 và 3k + 2

TH1 : p = 3k + 1

=> 2p + 1 = 2 ( 3k+1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 ( 2k + 1 ) là hợp số ( loại vì đề bài cho 2p + 1 là số nguyên tố )

TH2 : p = 3k + 2

=> 2p + 1 = 2 ( 3k + 2 ) + 1 = 6k + 4 + 1 = 6k + 5 là số nguyên tố ( thỏa mãn )

=> 4p + 1 = 4 ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 ( 4k + 3 ) là hợp số ( đpcm )

Vậy,..............

30 tháng 10 2019

1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3

p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số

2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3

b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.

Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số

30 tháng 10 2019

thanks bn HD Film nha