K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

\(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}-\frac{1}{x-1}\)

\(=\frac{\left(x-1\right)^2}{x^2-2x+1+3x}-\frac{1-2x^2+4x}{x^3-1}-\frac{1}{x-1}\)

\(=\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{x^3-1}-\frac{1}{x-1}\)

a)\(ĐKXĐ:x\ne1\)

\(MTC:\left(x-1\right)^3=\left(x-1\right)\left(x^2+x+1\right)\)

b)\(\frac{\left(x-1\right)^3}{x^3-1}-\frac{1-2x^2+4x}{x^3-1}-\frac{x^2+x+1}{x^3-1}=0\)

\(\Rightarrow\left(x-1\right)^3-\left(1-2x^2+4x\right)-\left(x^2+x+1\right)=0\)

\(\Leftrightarrow x^3-3x^2+27x-1-1+2x^2-4x-x^2-x-1=0\)

\(\Leftrightarrow x^3-2x^2+22x-3=0\)

ĐẾN ĐÂY THÌ BÍ RỒI T_T

ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

a: \(A=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{-2x^2+4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{x\left(x+1\right)}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{\left(x^2+1\right)}{x+1}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}=\dfrac{x^2+1}{x+1}\)

Để R=0 thì \(x^2+1=0\)(vô lý)

b: Ta có: |x|=1

=>x=1(loại) hoặc x=-1(loại)

21 tháng 4 2020

a) Ta có :A = \(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

A = \(\left(\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)

    \(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)

    \(\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)

    = \(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}=1.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)

b) Để A > - 1 <=> \(\frac{x^2+1}{x+1}>-1\)

                       <=> \(\frac{x^2+1}{x+1}+1>0\)

                        <=> \(\frac{x^2+x+2}{x+1}>0\)

Vì x2 + x + 2 >0 \(\forall x\)

=> A > 0 <=> x + 1 > 0 <=> x > -1

1) Giải bài toán bằng cách lập ptrình: ( Nếu các đại lượng có sự biến đổi thì lập bảng 12 ô ) Một miếng đất hcn có chiều dài hơn chiều rộng 6m. Tính kích thước của miếng đất, biết chu vi của nó là 60m. 2) Giải các pt chứa ẩn ở mẫu ( Hãy tìm điều kiện cho ẩn để mẫu thức khác 0) a) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\) b)...
Đọc tiếp

1) Giải bài toán bằng cách lập ptrình: ( Nếu các đại lượng có sự biến đổi thì lập bảng 12 ô )

Một miếng đất hcn có chiều dài hơn chiều rộng 6m. Tính kích thước của miếng đất, biết chu vi của nó là 60m.

2) Giải các pt chứa ẩn ở mẫu ( Hãy tìm điều kiện cho ẩn để mẫu thức khác 0)

a) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

b) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

c) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x+3\right)\left(x-3\right)}\)

e) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)

f) \(\frac{x}{3x-2}-\frac{4}{4x-3}=\frac{x^2}{\left(3x-2\right)\left(4x-3\right)}\)

g) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

h) \(\frac{2x-1}{x-3}-\frac{1}{x}=\frac{3}{x^2-3x}\)

i) \(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-2}{4-x^2}\)

1
9 tháng 2 2020

Câu 1 :

- Gọi chiều dài miếng đất là x ( m, x > 6 )

=> Chiều rộng miếng đất là : x - 6 ( m )

=> Chu vi miếng đất đó là : \(2\left(x+x-6\right)\) ( m )

Theo đề bài chu vi mảnh đất đó là 60m nên ta có phương trình :

\(2\left(x+x-6\right)=60\)

=> \(2x-6=30\)

=> \(2x=24\)

=> \(x=12\) ( TM )

Mà diện tích mảnh đất là : \(x\left(x-6\right)\)

=> Smảnh đất = \(12\left(12-6\right)=12.6=72\left(m^2\right)\)

12 tháng 2 2020

bạn ơi, cái pt 2x - 6= 30 ra 18 mới đúng.