Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
Để \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1
\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)
\(\Rightarrow\)n\(\ne\)11k+1:2
Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1
\(\Rightarrow3\left(4n+3\right)⋮3n+1\)
\(\Rightarrow12n+9⋮3n+1\)
\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)
\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)
\(\Rightarrow5⋮3n+1\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )
+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )
+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )
+) \(3n+1=-5\Rightarrow n=-2\)
Vậy n = 0 hoặc n = -2
Để D nguyên thì
8n-5 chia hết cho 3n+2
=> 24n-15 chia hết cho 3n+2
=> 24n+16-31 chia hết cho 3n+2
Vì 24n+16 chia hết cho 3n+2
=> -31 chia hết cho 3n+2
=> 3n+2 thuộc Ư(31)
3n+2 | n |
1 | -1/3 |
-1 | -1 |
31 | 29/3 |
-31 | -11 |
Mà n nguyên
=> n \(\in\){-1; -11}
Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:
8n-5 chia hết cho d => 24n-15 chia hết cho d
3n+2 chia hết cho d => 24n+16 chia hết cho d
=> 24n+16-(24n-15) chia hết cho d
=> 31 chia hết cho d
Giả dử phân số rút gọn được
=> 3n+2 chia hết cho 31
=> 3n+2+31 chia hết cho 31
=> 3n+33 chia hết cho 31
=> 3(n+11) chia hết cho 31
=> n+11 chia hết cho 31
=> n = 31k-11
KL: Để D tối giản thì n \(\ne\)31k-11
Mình giải câu, còn câu b tương tự nhé!
a) Để A tồn tại thì n khác 4
\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}\)cũng nguyên
\(\Rightarrow\left(n-4\right)\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\} \)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
Kết hợp với điều kiện n khác 4 và n thuộc Z thì \(n\in\left\{5;3;7;1;11;-3;25;-17\right\}\) để A nguyên
b) Đáp án: \(n\in\left\{1;0\right\}\)(bạn có thể sẽ tính ra phân số khi tìm n nhưng đối chiếu điều kiện n thuộc Z nữa nhé)
Để A có gtrị nguyên thì 3n+9 chia hết cho n-4
=>3x(n-4)+3 chia hết cho n-4
=> 3 chia hết cho n-4 [ Vì 3x(n-4) chia hết cho n-4] =>n-4 thuộc Ư(3)={1;-1;3;-3}
Ta có bảng gtrị:
n-4 1 -1 3 -3
n 5 3 7 1
C/L C C C C
Vậy n={5;3;7;1} thì A nhận gtrị nguyên
Để B nhận gtri nguyên thì 6n+5 chia hết cho 2n-1
=>3x(2n-1)+8 chia hết cho 2n-1
=>8 chia hết cho 2n-1[ Vì3x(2n-1) chia hết cho 2n-1)
=>2n-1 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}
Vì 2n-1 là số lẻ =>2n-1 ={1 ;-1 }
Ta có bảnh gtrị
2n-1 1 -1
n 1 0
C/L C C
Vậy n={1;0} thì B đạt gtrị nguyên
a,
\(P=\frac{3n-4}{n+2}\) là phân số
<=> n + 2 khác 0
<=> n khác -2
b,
\(P=\frac{3n-4}{n+2}\inℤ\Leftrightarrow3n-4⋮n+2\)
=> 3n + 6 - 10 ⋮ n + 2
=> 3(n + 2) - 10 ⋮ n + 2
3(n + 2) ⋮ n + 2
=> 10 ⋮ n + 2
=> n + 2 thuộc Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
=> n thuộc {-3; -1; -4; 0; -7; 3; -12; 8}
vậy_
Giải :
a) Để P là phần số thì \(n+2\ne2\) \(\Rightarrow n\ne-2\)
b) Ta có : \(\frac{3n-4}{n+2}=\frac{3.\left(n+2\right)-10}{n+2}=3-\frac{10}{n+2}\)
Để P \(\in\)Z thì 10 \(⋮\)n + 2=> n + 2 \(\in\)Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}
Lập bảng :
Vậy n \(\in\){-1;-3; 0; -4; 3; -7; 8; -12} thì P \(\in\)Z