Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2+a-p=0
=> a^2+a = p
=> p = a.(a+1)
Ta thấy a;a+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2
=> p chia hết cho 2
Mà p nguyên tố => p = 2
=> a^2+a = 2
=> a^2+a-2 = 0
=> (a^2-a)+(2a-2) = 0
=> a.(a-1)+2.(a-1) = 0
=> (a-1).(a+2) = 0
=> a-1=0 hoặc a+2=0
=> a=1 hoặc a=-2
Vậy a thuộc {-2;1}
Tk mk nha
\(a^2+a-p=0\)
\(\Rightarrow a\left(a+1\right)=p\)
Vì p là số nguyên tố => p chỉ có 2 ước nguyên là 1; p
Mà \(a\left(a+1\right)=p\) => a và a + 1 là các ước của p
=> a = 1 hoặc a + 1 = 1 => a = 1 hoặc a = 0
Thử lại : với a = 1 => 1(1 + 1) = 2 là số nguyên tố (tm)
với a = 0 => 0(0 + 1) = 0 không là số nguyên tố (loại)
Vậy a = 1
b)Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.
Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5
\(⇒\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.
a)Nếu p chẵn => p=2 => p^2 + 2^p = 2^2 + 2^2 =8 (loại)
Nếu p lẻ :
+) p\(⋮\)3 => p=3 => p^2 + 2^p =17 (thỏa)
+)p ko chia hết cho 3. Đặt p=3k\(\pm\)1
p^2=(3k\(\pm\)1)^2=9k^2 \(\pm\)6k+1=3(3k^2 \(\pm\)2k)+1 chia 3 dư 1
Còn: 2^p\(\equiv\)(-1)^p\(\equiv\)-1 (mod 3) do p lẻ
Do đó:p^2+2^p=1+(-1)=0 (mod 3)
Mà p^2 + 2^p >3 nên ko thể là số nguyên tố (loại)
Vậy p=3 thì 2^p + p^2 là snt
a^2+a-p=0
=> a^2+a = p
=> p = a.(a+1)
Ta thấy a;a+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2
=> p chia hết cho 2
Mà p nguyên tố => p = 2
=> a^2+a = 2
=> a^2+a-2 = 0
=> (a^2-a)+(2a-2) = 0
=> a.(a-1)+2.(a-1) = 0
=> (a-1).(a+2) = 0
=> a-1=0 hoặc a+2=0
=> a=1 hoặc a=-2
Vậy a thuộc {-2;1}