Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5
Ta có P8n+3P4n-4 = p4n(p4n+3) -4
Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1
( cách chứng minh là đồng dư hay tìm chữ số tận cùng )
suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5
Bài 5
Ta xét :
Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)
Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)
suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)
Từ (1) và (2) suy ra 4p+1 là hợp số
y lớn hơn 2 => y lẻ => y chia 4 dư 3 hoặc 1
=> y^2 chia 4 dư 1 => 2y^2 chia 4 dư 2
=> 2y^2 + 1 chia 4 dư 4
mà số chính phương chia 4 dư 0 hoặc 1=> ko phải sô chính phương
ta có : 2018p \(\equiv\)2p (mod 3)
Vì là SNT > 5 => p lẻ
=> 2p \(\equiv\)2 (mod 3)
2017q \(\equiv\)1 (mod 3)
=> 2018p - 2017q \(\equiv\)2 - 1 = 1 (mod 3)
Vậy 2018p - 2017q chia 3 dư 1
b) xét số dư khi chia p cho 3 => p có 2 dạng 3k + 1 hoặc 3k + 2
+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)2 (mod 3) ; 7p \(\equiv\)1 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3
+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)1(mod 3) ; 7p \(\equiv\)2 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3
Vậy 3p5 + 5p3 + 7p \(⋮\)3 (1)
Xét số dư khi chia p cho 5 => p có 4 dạng 5k+1;5k+2;5k+3;5k+4
+ p = 5k + 1 => 3p5 \(\equiv\)3 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)7 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 2 => 3p5 \(\equiv\)1 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)4 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 3 => 3p5 \(\equiv\)4 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)1 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
+ p = 5k + 4 => 3p5 \(\equiv\) 2(mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)3 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5
Vậy 3p5 + 5p3 + 7p \(⋮\)5 (2)
Từ (1) và (2) và (3;5) = 1 => 3p5 + 5p3 + 7p \(⋮\)15
=> \(\frac{3p^5+5p^3+7b}{15}\)là số nguyên (đpcm)
Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại
+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn
+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)
=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3
Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.
Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3
Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại
Vậy n = 3
Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)
Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8
Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5
các số nguyên tố có tận cùng là 1,3,7,9
vì p có có mũ là 20
nên có tận cùng là 01
\(\Rightarrow p^{20}-1⋮100\)
Với n= 3 , ,chọn x3 =y3 =1
Giả sử với n \(\ge\)3 , tồn tại cặp số nguyên dương lẻ ( xn ,yn ) sao cho 7.xn2 + y2n= 2n.Ta chứng minh mỗi cặp
\(\left(X=\frac{x_n+y_n}{2},Y=\frac{\left|7.x_n-y_n\right|}{2}\right)\),
\(\left(X=\frac{\left|x_n-y_n\right|}{2},Y=\frac{7.x_n\pm y_n}{2}\right)^2=2.\left(7.x_n^2+7_n^2\right)=2.2^n=2^{n+1}\)
Vì xn,yn lẻ nên xn = 2a+1 ; yn = 2k + 1 ( a,k \(\inℤ\))
\(\Rightarrow\frac{x_n+y_n}{2}=k+1+1\)và \(\frac{\left|x_n-y_n\right|}{2}=\left|k-1\right|.\)
Điều đó chứng tỏ rằng một trong các số \(\frac{x_n+y_n}{2}.\frac{\left|x_n+y_n\right|}{2}\)là lẻ .Vì vậy với n + 1 tồn tại các số tự nhiên lẻ xn+1 và yn+1 thỏa mãn 7.x2n+1 + y2n+1 =2n+1=> đpcm