Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p=3k+1;3k+2
xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3
=>p+2 là hợp số(Vô lí)
=>p=3k+2
=>p+1=3k+3=3(k+1)
p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2
Vì (3;2)=1=>p+1 chia hết cho 6
=>đpcm
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.
Cho p là số nguyên tố lớn hơn 3 , biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p +1 chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2
- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.
- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.
=> đpcm
tick đúng cho tớ với !
Cho p là số nguyên tố lớn hơn 3 , biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p +1 chia hết cho 6
Tp là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2
- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.
- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.
=> đpcm
tick đúng cho tớ với !
vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 và p lẻ
Nếu p có dạng p=3k+1 => p+2=3(k+1) là hợp số -> Loại
vậy p có dạng 3k+2
=> p+1=3(k+1) chia hết cho 3
vì p lẻ nên p+1 chẵn => p+1 chia hết cho 2
=> p chia hết cho 6
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.
Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2; trong 3 số này có 1 số chia hết cho 3
Do p; p + 2 nguyên tố > 3 => p; p + 2 không chia hết cho 3
=> p + 1 chia hết cho 3 (1)
Do p nguyên tố > 3 => p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (2)
Từ (1) và (2), do (2;3)=1 => p + 1 chia hết cho 6 (đpcm)
p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p=3k+1;3k+2
xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3
=>p+2 là hợp số(Vô lí)
=>p=3k+2
=>p+1=3k+3=3(k+1)
p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2
Vì (3;2)=1=>p+1 chia hết cho 6
=>đpcm
p là số nguyên tố lớn hơn 3 nên p là số lẻ , do đó p + 1 \(⋮\)2 (1)
p là số nguyên tố lớn hơn 3 nên p có dạng p = 3k + 1 hoặc p - 3k + 2 (k \(\in N\))
Nếu p = 3k + 1 thì p + 2 = 3k + 3 \(⋮\)3 và p + 2 > 3 nên p + 2 là hợp số . Vậy p = 3k + 2 , khi đó p + 1 = 3k + 3 \(⋮\)3 (2)
Từ (1) và (2) => p + 1 \(⋮\)2.3 hay p + 1 \(⋮\)6
a)
a,b là ước của 6 thì \(\left\{{}\begin{matrix}a=6n\\b=6m\end{matrix}\right.\left(n,m\in N\right)\)
\(a.b=360\Leftrightarrow6n.6m=360\Leftrightarrow n.m=10=2.5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}n=2\\m=5\end{matrix}\right.\\\left\{{}\begin{matrix}n=5\\m=2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\Rightarrow a=12\\n=5\Rightarrow a=30\end{matrix}\right.\)
p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p=3k+1;3k+2
xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3
=>p+2 là hợp số(Vô lí)
=>p=3k+2
=>p+1=3k+3=3(k+1)
p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2
Vì (3;2)=1=>p+1 chia hết cho 6
=>đpcm