Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là SNT lớn hơn 3 lên p—1 và p+1 là số chẵn=» (p—1)×(p+1) chia hết cho 8(1)
vì p là số nguyên tố lớn hơn 3 lên p có dạng 3k+1 hoặc 3k+2. Tính từng trường hợp »» chia hết cho 3.kết hợp vs (1) chia hết cho 24(điều phải chứng minh)
Vì p là số nguyên tố >3 nên p là số lẻ
=> 2 số p-1,p+1 là 2 số chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên => p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 => (p-1)(p+1)=3k(3k+2) chia hết cho 3 (*)
+) Với p=3k+2 => (p-1)(p+1)=(3k-1).3.(k+1) chia hết cho 3 (**)
từ (*) và (**)=>(p-1)(p+1) chia hết cho 3 (2)
Vì (8;3)=1 =>từ (1) và (2) => (p-1)(p+1) chia hết cho 24
Số nguyên tố \(p\) lớn hơn 3 có dạng \(3k+1\) hoặc \(3k+2\). Dạng nào thì \(\left(p-1\right)\left(p+1\right)\) cũng chia hết cho 3.
Số \(p\) lớn hơn bằng 5 nên có dạng \(4k+1\) hoặc \(4k+3\). Dạng nào thì trong 2 số \(p-1\) và \(p+1\) có 1 số chia hết cho 4 và số còn lại chẵn nên tích chia hết cho 8.
Vậy \(\left(p-1\right)\left(p+1\right)\) chia hết cho 24
a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ.
\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)
(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))
\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).
Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).
Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).
b) Đặt \(\left(2n+1,3n+1\right)=d\).
Suy ra
\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Vì p là snt >3 nên p là số lẻ => (p-1).(p+1) là 2 số chằn liên tiếp
=> (p-1).(p+1) chia hết cho 8 (1)
Vì p là snt >3 nên p có dạng: p=3k+1 hoặc p=3k+2
. Nếu p=3k+1 thì (p-1).(p+1) = (3k+1-1)(3k+1+1)=3k(3k+2) chia hết cho 3 (2)
. Nếu p=3k+2 thì (p-1)(p+1) = (3k+2-1)(3k+2+1)=(3k+1)(3k+3)
=(3k+1)(k+1)3 chia hết cho 3 (3)
Từ (1) và (2);(1) và (3) => (p-1)(p+1) chia hết cho 8 và 3 => (p-1)(p+1) chia hết cho BCNN(3;8)
Mà ƯCLN(3;8)=1 => BCLN(3;8) = 3.8 = 24
=> (p-1)(p+1) chia hết cho 24 (ĐPCM)