K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 2 2024

Lời giải:

$p>3$ và $p$ nguyên tố nên $p$ lẻ

$\Rightarrow p+1$ chẵn $\Rightarrow p+1\vdots 2(1)$

Mặt khác:

$p>3$ và $p$ nguyên tố nên $p$ không chia hết cho $3$

$\Rightarrow p=3k+1$ hoặc $p=3k+2$ với $k$ tự nhiên.

Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái đề bài) 

$\Rightarrow p=3k+2$
Khi đó:

$p+1=3k+3\vdots 3(2)$
Từ $(1); (2)$, mà $(2,3)=1$ nên $p+1\vdots (2.3)$ hay $p+1\vdots 6$

18 tháng 7 2018

nhớ có lời giải nha.  THANKS BẠN NHIỀU

6 tháng 11 2017

Vì p và q nguyên tố > 3 nên p và q đều lẻ => p^2 và q^2 đều chia 8 dư 1 => p^2 - q^2 chia hết cho 8 (1)

Lại có p và q nguyên tố > 3 nên p và q đều ko chia hết cho 3 => p^2 và q^2 đều chia 3 dư 1 => p^2 - q^2 chia hết cho 3 (2)

Từ (1) và (2) => p^2 - q^2 chia hết cho 24 ( vì 3 và 8 nguyên tố cùng nhau )

28 tháng 8 2016

Bài 1: 5 vì 2+3=5 và 7-2=5

30 tháng 8 2017
n= 0~~ ko có giá trị
2 tháng 2 2016

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.