K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

vì p là SNT lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2 và p lẻ  (K thuộc N*)
Mà p+2 cũng là SNT nên p có dạng 3k+2
p+1=3k+2+1=3(k+1) chia hết cho 3
Mà p lẻ => p +1 chia hết cho 2
=> p chia hết cho 6

5 tháng 11 2017

Số nguyên tố > 3 luôn tồn tại dưới dạng 3k + 1 hoặc 3k + 2

Nếu p = 3k + 1

=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3

Vậy p không tồn tại ở dạng 3k + 1

=> p = 3k + 2 

=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3

Mà các số nguyên tố lớn hơn 3 đều là số lẻ

=> p + 1 là số chẵn <=> chia hết cho 2

p + 1 vừa chia hết cho 2 , vừa chia hết cho 3

=> p + 1 chia hết cho 6

5 tháng 11 2017

bạn có thể làm cách đi-ric-lê

Ba số tự nhiên liên tiếp là p ; p + 1 và p + 2 

Vì p và p + 2 đều là số nguyên tố nên số ở giữa p + 1 phải chia hết cho 2 ( 1 ) 

Mà 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3. Vì 2 số kia là số nguyên tố 

=> p + 1 chia hết cho 3 ( 2 ). Từ ( 1 ) ( 2 ) => p + 1 chia hết cho 2 và 3 <=> p + 1 chia hết cho 6

p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1⋮⋮2 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.

Dạng 3k+1 không xảy ra.

Dạng 3k+2 cho ta p+1⋮3 (2).

Từ (1) và (2) cho ta p+1⋮6

12 tháng 6 2015

a)2x+y=7(2x+y)=14x+7y

Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9

9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9

b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2

p là số nguyên tố lớn hơn 3 nên

*)P=3k(loại vì 3k là hợp số  có ước là 3 và k)

*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)

*)p=3k+2(TM)

=>2p+2=6k+4+2=6k+6 chia hết cho 3

2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6

=>(2p+2).1/2=p+1 chia hết cho 6

22 tháng 2 2018

^.^

^-^

^_^

24 tháng 10 2018

số đó là số nào

24 tháng 10 2018

là p và p+2

20 tháng 4 2016

Nếu P là số nguyên tố mà P+2 cũng là số nguyên tố thì P phải là con số 5.

Có P là 5 thì ta có: P+2=5+2=7 (là số nguyên tố)

Và P+1=5+1=6

Suy ra P+1 chia hết cho 6

17 tháng 12 2023
Vì p là số nguyên tố lớn hơn 3 nên p \cancel{vdots} 3 ⇒ p có dạng 3k + 1 hoặc 3k + 2 ( k ∈ N** ) Xét p = 3k + 1 ⇒ 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 vdots 3 ( là hợp số ) ( Loại ) ⇒ p có dạng 3k + 2 ⇒ 4p + 1 = 4 . ( 3k  +2 ) + 1 = 12k + 8 + 1 = 12k + 9 vdots 3 ( là hợp số ) Vậy , 4p + 1 là hợp số .  
5 tháng 8 2016

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

Suy rea:p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

Chúc bạn học tốt Trafalgar