Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ đề bài của bạn có chút nhầm lẫn, 2006 chứ ko phải 2016 đâu
n là số nguyên tố, n>3
=>n=3k+1 hoặc n=3k+2 (k\(\in\)N)
+)Nếu n=3k+1
=>\(n^2+2006=\left(3k+1\right)^2+2006=9k^2+6k+1+2016=9k^2+6k+2007\) là hợp số
=>n2+2006 là hợp số
+)Nếu n=3k+2
=>\(n^2+2006=\left(3k+2\right)^2+2006=9k^2+12k+4+2006=9k^2+12k+2010\) là hợp số
=>n2+2006 là hợp số
Vậy với n là số nguyên tố, n>3 thì n2+2006 là hợp số
do số chính phương khi chia cho 3 có số dư là 0 hoặc 1 mà n là số nguyên tố nên n^2 có dạng 3k+1
Ta có:n^2+2018=3k+1+2018=3k+2019
do 3k chia hết cho 3,2019chia hết cho 3
nên 3k+2019 là hợp số hay n^2+2018 là hợp số
Vậy không có số nguyên tố n nào thỏa mãn đề bài
Vì n là số nguyen tố lon hon 3 nên n co dang : 3k+1;3k+2
TH1 : n=3k+1
=> n^2+2018=(3k+1)(3k+1)+2018=9k^2+3k+3k+1+2018=9k^2+6k+2019
TH2 : n=3k+2
=> n^2+2018=(3k+2)(3k+2)+2018=9k^2+6k+6k+4+2018=9k^2+12k+2022 chia het cho 3
Vay n^2+2018 la hop so
n là số nguyên tố > 3
=> n ko chia hết cho 3
=> n^2 chia 3 dư 1
=> n^2+2019 chia hết cho 3
Mà n^2+2019 > 3 => n^2+2019 là hợp số
Tk mk nha
a)Ta có
p = 42k + y = 2. 3 .7 . k + r (k,r thuộc N, 0 < y < 42 )
Vì y là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
Vì p là số nguyên lớn hơn 3
=> p lẻ
=> p2 lẻ
=> p2+2003 chẵn
mà p>3=>p2>3=>p2+200>3
=>P2+2003 là hợp số
Đảm bảo đúng!!!
Vì p là số nguyên lớn hơn 3
=> p lẻ
=> p2 lẻ
=> p2+2003 chẵn
mà p>3=>p2>3=>p2+200>3
=>P2+2003 là hợp số
số nguyên tố