Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : số chia hết cho 6 chia hết 2 và 3
Vì 2 là SNT duy nhất => các SNT >3 đều là số lẻ
=>a-1 là số chẵn=> a-1 chia hết cho 2
=>(a-1)(a+4) chia hết cho 2
Vì a>3=> a có dạng 3k+1 hoặc 3k+2
Với a có dạng 3k+1
=>a-1=3k+1-1=3k chia hết cho 3
=>(a-1)(a+4) chia hết cho 3
Với a có dạng 3k+2
=>a+4=3k+4+2=3k+6 chia hết cho 3
=>(a-1)(a+4) chia hết cho 3
Vậy chắc chắn (a-1)(a+4) chia hết cho 6
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
p^4-q^4 = (p^2-q^2).(p^2+q^2) = (p-q).(p+q).(p^2+q^2)
p,q là snt > 5 => p,q lẻ => p=2a+1 ; q=2b+1 ( a,b thuộc N sao )
=> p^4-q^4=(2a-2b)+(2a+2b+2).(4a^2+4b^2+4a+4b+2) = 16.(a-b).(a+b).(2a^2+2b^2+2a+2b+1) chia hêt cho 16 (1)
Lại có : p,q là snt > 5 =>p,q đều ko chia hết cho 3
=> p^2 và q^2 đều chia 3 dư 1
=> p^4 và q^4 đều chia 3 dư 1
=> p^4-q^4 chia hết cho 3 (2)
Mà p,q là snt > 5 => p,q đều ko chia hết cho 5
=> p^2;q^2 chia 5 dư 1 hoặc 4
=> p^4 và q^4 đều chia 5 dư 1
=> p^4-q^4 chia hết cho 5 (3)
Từ (1);(2) và (3) => p^4-q^4 chia hết cho 16.3.5=240 ( vì 16;3;5 là 3 số nguyên tố với nhau từng đôi một )
=> ĐPCM
Tk mk nha
4 bạn ạ
Ta có :
Coi : \(A=\left(a-1\right)\left(a+4\right)=\left(a-1\right).a+\left(a-1\right).4=a^2-a+4a-4\)
Vì a là số nguyên tố lớn hơn 3 nên a=3k+1 hoặc a=3k+2
Với a=3k+1:
\(A=\left(3k+1\right)^2-\left(3k+1\right)+4.\left(3k+1\right)-4\)
\(=9k^2+1+2.3k-3k-1+12k+4-4\)
\(=9k^2+6k-3k+12k+1-1+4-4\)
\(=9k^2+15k\)
Với k là số chẵn: A là tổng của 2 số chẵn nên chia hết cho 2
Với k là số lẻ: A là tổng của 2 số lẻ-> là một số chẵn chia hết cho 2
=> Trong mọi trường hợp A luôn chia hết cho 2
Lại có:
9k2
chia hết cho 3
15k chia hết cho 3
=> A=9k2+15k chia hết cho 3
Vì ƯCLN(2,3)=1 và A chia hết cho 2 , 3
=> A chia hết cho 2.3=6
=> A chia hết cho 6
Làm tương tự với k=3k+2
:D