K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

4 bạn ạ

20 tháng 1 2018

Ta có :

Coi : \(A=\left(a-1\right)\left(a+4\right)=\left(a-1\right).a+\left(a-1\right).4=a^2-a+4a-4\)

Vì a là số nguyên tố lớn hơn 3 nên a=3k+1 hoặc a=3k+2
Với a=3k+1:

\(A=\left(3k+1\right)^2-\left(3k+1\right)+4.\left(3k+1\right)-4\)

\(=9k^2+1+2.3k-3k-1+12k+4-4\)

\(=9k^2+6k-3k+12k+1-1+4-4\)

\(=9k^2+15k\)

Với k là số chẵn: A là tổng của 2 số chẵn nên chia hết cho 2
Với k là số lẻ: A là tổng của 2 số lẻ-> là một số chẵn chia hết cho 2
=> Trong mọi trường hợp A luôn chia hết cho 2
Lại có:
9k2
 chia hết cho 3
15k chia hết cho 3
=> A=9k2+15k chia hết cho 3
Vì ƯCLN(2,3)=1 và A chia hết cho 2 , 3
=> A chia hết cho 2.3=6
=> A chia hết cho 6
Làm tương tự với k=3k+2

:D

29 tháng 1 2016

Ta có : số chia hết cho 6  chia hết 2 và 3

Vì 2 là SNT duy nhất => các SNT >3 đều là số lẻ

=>a-1 là số chẵn=> a-1 chia hết cho 2

=>(a-1)(a+4) chia hết cho 2

Vì a>3=> a có dạng 3k+1 hoặc 3k+2

Với a có dạng 3k+1

=>a-1=3k+1-1=3k chia hết cho 3

=>(a-1)(a+4) chia hết cho 3

Với a có dạng 3k+2

=>a+4=3k+4+2=3k+6 chia hết cho 3

=>(a-1)(a+4) chia hết cho 3

               Vậy chắc chắn (a-1)(a+4) chia hết cho 6

4 tháng 11 2015

1)

+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)

+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)

+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2

      Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3  

            =>p+8 là hợp số (trái với giả thiết )

Vậy p phải có dạng là  3k+2

Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3

=>p+4 là hợp số (đpcm)

12 tháng 1 2018

p^4-q^4 = (p^2-q^2).(p^2+q^2) = (p-q).(p+q).(p^2+q^2)

p,q là snt > 5 => p,q lẻ => p=2a+1 ; q=2b+1 ( a,b thuộc N sao )

=> p^4-q^4=(2a-2b)+(2a+2b+2).(4a^2+4b^2+4a+4b+2) = 16.(a-b).(a+b).(2a^2+2b^2+2a+2b+1) chia hêt cho 16 (1)

Lại có : p,q là snt > 5 =>p,q đều ko chia hết cho 3

=> p^2 và q^2 đều chia 3 dư 1

=> p^4 và q^4 đều chia 3 dư 1

=> p^4-q^4 chia hết cho 3 (2)

Mà p,q là snt > 5 => p,q đều ko chia hết cho 5

=> p^2;q^2 chia 5 dư 1 hoặc 4

=> p^4 và q^4 đều chia 5 dư 1

=> p^4-q^4 chia hết cho 5 (3)

Từ (1);(2) và (3) => p^4-q^4 chia hết cho 16.3.5=240 ( vì 16;3;5 là 3 số nguyên tố với nhau từng đôi một )

=> ĐPCM

Tk mk nha

12 tháng 1 2018

bai lop may