K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

Câu hỏi của tran gia nhat tien - Toán lớp 8 - Học trực tuyến OLM

26 tháng 3 2020

Với n= 3 ,  ,chọn x3 =y3 =1

Giả sử với n \(\ge\)3 , tồn tại cặp số nguyên dương lẻ ( xn ,yn ) sao cho 7.xn2 + y2n= 2n.Ta chứng minh mỗi cặp 

\(\left(X=\frac{x_n+y_n}{2},Y=\frac{\left|7.x_n-y_n\right|}{2}\right)\),

\(\left(X=\frac{\left|x_n-y_n\right|}{2},Y=\frac{7.x_n\pm y_n}{2}\right)^2=2.\left(7.x_n^2+7_n^2\right)=2.2^n=2^{n+1}\)

Vì xn,yn lẻ nên xn = 2a+1 ; yn = 2k + 1 ( a,k \(\inℤ\)

\(\Rightarrow\frac{x_n+y_n}{2}=k+1+1\)và \(\frac{\left|x_n-y_n\right|}{2}=\left|k-1\right|.\)

Điều đó chứng tỏ rằng một trong các số \(\frac{x_n+y_n}{2}.\frac{\left|x_n+y_n\right|}{2}\)là lẻ .Vì vậy với n + 1 tồn tại các số tự nhiên lẻ xn+1 và yn+1 thỏa mãn 7.x2n+1 + y2n+1 =2n+1=> đpcm 

6 tháng 11 2017

Giả sử   \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.

Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)

TH1: Nếu trong a và b có một số chẵn, một số lẻ:

Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)

\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)

Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)

\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.

Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.

Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.

TH2: Nếu cả a và b đều lẻ

\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.

Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1) 

Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)

Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.

Vậy k luôn bằng 5 và nó là số nguyên tố.

19 tháng 9 2020

a) 

x123456
y\(\sqrt{22}\)(loại\(2\sqrt{7}\)(loại)\(\sqrt{46}\)(loại)10(thoả mãn)\(\sqrt{262}\) 

\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)

DD
12 tháng 9 2021

Vì \(p\)là số nguyên tổ nên tổng các ước nguyên dương của \(p^4\)là \(1+p+p^2+p^3+p^4\).

Đặt \(p^4+p^3+p^2+p+1=n^2\)

\(\Leftrightarrow4p^4+4p^3+4p^2+4p+1=4n^2\)

Ta có: 

\(4p^4+4p^3+4p^2+4p+4>4p^4+4p^3+p^2=\left(2p^2+p\right)^2\)

\(4p^4+4p^3+4p^2+4p+4< 4p^4+4p^3+9p^2+4p+4=\left(2p^2+p+2\right)^2\)

Suy ra \(\left(2p^2+p\right)^2< 4n^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2n\right)^2=\left(2p^2+p+1\right)^2=4p^4+4p^3+5p^2+2p+1\)

\(\Rightarrow p^2-2p-3=0\)

\(\Leftrightarrow\left(p+1\right)\left(p-3\right)=0\)

\(\Rightarrow p=3\)thỏa mãn. 

Vậy \(p=3\).

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1