K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2021

a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)

\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)

b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)

\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)

DT
15 tháng 10 2023

\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.

15 tháng 10 2023

Giúp với ạ mình cảm ơn ai làm được mình cho 100sao 

 

3 tháng 9 2019

Bài 1:

\(a\)) \(4\)\(\sqrt{15}\)

\(16>15\) nên \(\sqrt{16}>\sqrt{15}\)

\(\Rightarrow4>\sqrt{15}\)

\(b\)) \(5\)\(\sqrt{2}+\sqrt{5}\)

Ta có: \(\left(\sqrt{2}+\sqrt{5}\right)^2=2+2\sqrt{10}+5=2\sqrt{10}+7\)

\(5^2=25\)

Suy ra: \(\left(\sqrt{2}+\sqrt{5}\right)^2-5^2=2\sqrt{10}+7-25\)

\(=2\sqrt{10}-18\)

\(=\sqrt{40}-\sqrt{324}< 0\)

Vậy \(5>\sqrt{2}+\sqrt{5}\)

3 tháng 9 2019

1: \(c\)) Căn của 2 căn 3 và căn của 3 căn 2

Ta có: \(\sqrt{2\sqrt{3}}^4=2\sqrt{3}^2=12\)

\(\sqrt{3\sqrt{2}}^4=3\sqrt{2}^2=18\)

\(12< 18\) nên \(\sqrt{2\sqrt{3}}^4< \sqrt{3\sqrt{2}}^4\)

Hay \(\sqrt{2\sqrt{3}}< \sqrt{3\sqrt{2}}\)