Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^4 + 2^3-x -2
=x^4 - x^3 + 3x^3 - 3x^2 + 3x^2 - 3x + 2x-2
=x^3.(x-1) + 3x^2.(x-1) + 3x.(x-1)+2.(x-1)
=(x-1).( x^3+ 3x^2 + 3x+2)
=(X+1).(X^3 + 2X^2 + X^2 +2X +X+2)
=(X+1).(X+2).(X^2 +X + 1)
1/
a, (x-3)2+(4+x)(4-x)=10
<=>x2-6x+9+(16-x2)=10
<=>-6x+25=10
<=>-6x=-15
<=>x=5/2
còn lại tương tự a
2/
a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3
Mà (2,3)=1
=>a(a+1)(a+2) chia hết cho 6 (đpcm)
b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)
c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)
d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)
g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\frac{1}{4}\)
bn xem lại đi nha
a) \(36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)
\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)
Bài 2
a) 36x2-49=0
⇔ (6x)2-49=0
⇔(6x-7).(6x+7)=0
TH1: 6x-7=0 TH2: 6x+7=0
⇔6x=7 ⇔6x=-7
⇔x=7/6 ⇔x=-7/6
Bài 1:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2-26=0\)
\(\Leftrightarrow-13x-26=0\)
\(\Leftrightarrow-13\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
b) \(\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Bài 2:
a) \(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
b) \(\left(2x-1\right)\left(2x+1\right)\left(1-5x\right)\)
\(=\left(4x^2-1\right)\left(1-5x\right)\)
\(=4x^2-20x^3-1+5x\)
\(\frac{2}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}=\frac{2}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x}\)
\(=\frac{2\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x-1\right)\left(x+1\right)}-\frac{2.2.\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)\left(x+1\right)}\)
=\(=\frac{2x-2+4x^2-2x-4\left(x^2-1\right)}{2x\left(x-1\right)\left(x+1\right)}=\frac{2x-2+4x^2-2x-4x^2+4}{2x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{1}{x\left(x-1\right)\left(x+1\right)}\)
b,ta có
\(\frac{1}{P}=x\left(x-1\right)\left(x+1\right)\)
Vì x(x-1)(x+1) là 3 số liên tiếp
=>x(x-1)(x+1) chia hết cho 3
hay 1/p chia hết cho 3