Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(12x\left(x-4\right)-\left(x+1\right)\left(x^2-x+1\right)+\left(x-4\right)^3=\left(x-3\right)\left(x+1\right)-\left(x+5\right)^2\) ⇔ \(12x^2-48x-x^3-1+x^3-12x^2+48x-64=x^2-2x-3-x^2-10x-25\) ⇔ \(12x-37=0\)
⇔ \(x=\dfrac{37}{12}\)
Vậy ,....
1: \(\Leftrightarrow x^2-25-x^2-8x-16+\left(4x+1\right)^3=64x^3+8+48x^2-12x\)
\(\Leftrightarrow-8x-41+64x^3+48x^2+12x+1=64x^3+48x^2-12x+8\)
=>4x-40=-12x+8
=>16x=48
hay x=3
2: \(\Leftrightarrow12x^2-48x-x^3+1+x^3-12x^2+48x-64=x^2-2x-3-x^2-10x-25\)
\(\Leftrightarrow-63=-12x-28\)
=>12x+28=63
=>12x=35
hay x=35/12
a) \(\left(2x-3\right)^2-\left(2x+5\right)^2=10\)
\(\Leftrightarrow4x^2-12x+9-4x^2-20x-25-10=0\)
\(\Leftrightarrow-32x-26=0\)
\(\Leftrightarrow-32x=26\)
\(\Rightarrow x=-\frac{13}{16}\)
b) \(4\left(x+1\right)^2+\left(2x-1\right)^2+8\left(x-1\right)\left(x+1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1+8x^2-8=0\)
\(\Leftrightarrow16x^2+4x-3=0\)
\(\Leftrightarrow4\left(4x^2+x+\frac{1}{16}\right)-\frac{13}{4}=0\)
\(\Leftrightarrow\left[2\left(2x+\frac{1}{4}\right)\right]^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)
\(\Leftrightarrow\left(4x+\frac{1}{2}-\frac{\sqrt{13}}{2}\right)\left(4x+\frac{1}{2}+\frac{\sqrt{13}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+\frac{1-\sqrt{13}}{2}=0\\4x+\frac{1+\sqrt{13}}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{8}\\x=\frac{-1-\sqrt{13}}{8}\end{cases}}\)
c) \(\left(x+5\right)^2=45+x^2\)
\(\Leftrightarrow x^2+10x+25-x^2-45=0\)
\(\Leftrightarrow10x-20=0\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
d) \(\left(2x-3\right)^2-\left(2x-1\right)^2=-3\)
\(\Leftrightarrow4x^2-12x+9-4x^2+4x-1+3=0\)
\(\Leftrightarrow-8x+11=0\)
\(\Leftrightarrow-8x=-11\)
\(\Rightarrow x=\frac{11}{8}\)
e) \(\left(x-1\right)^2-\left(5x-3\right)^2=0\)
\(\Leftrightarrow\left(x-1-5x+3\right)\left(x-1+5x-3\right)=0\)
\(\Leftrightarrow\left(-4x+2\right)\left(6x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+2=0\\6x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{2}{3}\end{cases}}\)
\(=\dfrac{x^4-x^3+x^2-2x+1}{x^2+x+1}\)
\(=\dfrac{x^4+x^3+x^2-2x^3-2x^2-2x+2x^2+1}{x^2+x+1}\)
\(=x^2-2x+\dfrac{2x^2+1}{x^2+x+1}\)
1) \(\dfrac{x^2-4}{x^2+2x+1}:\dfrac{4-2x}{2x+2}=\dfrac{\left(x-2\right)\left(x+2\right)2\left(x+1\right)}{\left(x+1\right)^22\left(2-x\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x+1\right)}{-2\left(x-2\right)\left(x+1\right)\left(x+1\right)}=\dfrac{-\left(x+2\right)}{x+1}=\dfrac{-x-2}{x+1}\)
2) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)=\dfrac{x+1}{x+2}:\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x+3\right)\left(x+3\right)}{\left(x+2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}=\dfrac{x^2+6x+9}{x^2+4x+4}\)
\(1.\left(x-5\right)\left(x+5\right)-\left(x+4\right)^2+\left(4x+1\right)^3=\left(4x+2\right)\left(16x^2-8x+4\right)+12x\left(4x-1\right)\)⇔ \(x^2-25-x^2-8x-16+64x^3+48x^2+12x+1=64x^3+8+48x^2-12x\)⇔ \(16x-48=0\)
⇔ \(x=3\)
KL..........
\(P=1+x+x^2+x^3+...+x^{10}\)
=>\(xP=x\left(1+x+x^2+x^3+...+x^{10}\right)\)
=>\(xP=x+x^2+x^3+x^4+...+x^{11}\)
=>\(xP-P=\left(x+x^2+x^3+x^4+...+x^{11}\right)-\left(1+x+x^2+x^3+...+x^{10}\right)\)
=>\(xP-P=x^{11}-1\)