Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tìm giá trị nhỏ nhất của :
\(A=\left|x-2\right|+5\)
Ta có: \(\left|x-2\right|\ge0\)Với mọi x
\(\Rightarrow\left|x-2\right|+5\ge5\)
Vậy Min A=5 khi và chỉ khi x=2
2) Tìm giá trị lớn nhất của :
\(B=12-\left|x+4\right|\)
\(-\left|x+4\right|\le0\)Với mọi x
\(\Rightarrow12-\left|x+4\right|\le12\)
Vậy Max B=12 khi và chỉ khi x=-4
1,vì \(\left|x-2\right|\ge0vớimọix\)
\(\Rightarrow\left|x-2\right|+5\ge5\)với mọi x
\(\Rightarrow A\ge5vớimọix\)
vậy GTNN của A là 5 khi x=2
2,vi \(\left|x+4\right|\ge0vớimọix\)
\(\Rightarrow-\left|x+4\right|\le0vớimọix\)
\(\Rightarrow12-\left|x+4\right|\le12vớimọix\)
\(\Rightarrow A\le12vớimọix\)
vay GTLN của A la 12 khi x=-4
Ta có : \(A=\left|x-5\right|-\left|x-7\right|\ge\left|x-5-x+7\right|=2\)
Vậy \(A_{min}=2\) khi \(5\le x\le7\)
Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)
\(=>-\frac{2}{5}|x-1|+1\le1\)
Dấu "=" xảy ra \(< =>x=1\)
Vậy Max A = 1 khi x = 1
Áp dụng \(|a|\ge0\)với \(\forall a\)Dấu "=" xảy ra khi \(a\ge0\)
Ta có: \(|x-2013|+|x-2015|=|x-2013|+|2015-x|\ge x-2013+2015-x=2với\forall x\)
Dâu "=" xảy ra khi \(x-2013\ge0\)và\(2015-x\ge0\)\(\Leftrightarrow\)\(2013\le x\le2015\)
Lại có: \(|x-2014|\ge0với\forall x\)
Dấu "=" xảy ra khi \(x-2014=0\Leftrightarrow x=2014\)
Do đó \(A\ge2+0=2với\forall x\)
Dấu "=" xảy ra khi \(2013\le x\le2015\)và \(x=2014\)\(\Leftrightarrow\)\(x=2014\)
Vậy \(minA=2\)khi\(x=2014\)
Ta có: \(\left|x-2013\right|+\left|x-2015\right|=\left|x-2013\right|+\left|2015-x\right|\ge\left|x-2013+2015-x\right|\)
\(\left|x-2013\right|+\left|2015-x\right|\ge2\)\(\left(1\right)\)
Và \(\left|2014-x\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|\ge2\)
Mà \(\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|=A\)
\(\Rightarrow A\)có GTNN là 2
Từ\(\left(1\right)\)
\(\Rightarrow\)Dấu \("="\)xảy ra khi \(\left(x-2013\right)\left(2015-x\right)\ge0\)
\(\Rightarrow2013\le x\le2015\)
\(\Rightarrow x=2014\)
Vậy, \(A\)có GTNN là 2 khi\(x=2014\)
a)\(A=12-\left|x-3\right|-\left|y+7\right|\)
\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)
\(\Rightarrow A\le12-0-0=12\)
Vậy Max A = 12 <=> x = 3 ; y = -7
b)\(B=-\left(x-2018\right)^6-1\)
\(-\left(x-2018\right)^6\le0\)
\(B\le0-1=-1\)
Vậy Max B = -1 <=> x = 2018
a) \(A=12-\left|x-3\right|-\left|y+7\right|\)
Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)
suy ra: \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)
Vậy MIN A = 12
Dấu "=" xảy ra <=> \(x=3;y=-7\)
b) \(B=-\left(x-2018\right)^6-1\)
Nhận thấy: \(\left(x-2018\right)^6\ge0\)
suy ra: \(B=-\left(x-2018\right)^2-1\le-1\)
Vậy MIN B = -1
Dấu "=" xảy ra <=> \(x=2018\)
c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)
Nhận thấy: \(\left|x+8\right|\ge0\) \(\left(3y+7\right)^{2016}\ge0\)
suy ra: \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)
Vậy MIN C = 20/7
Dấu "=" xảy ra <=> \(x=-8;y=-\frac{7}{3}\)