Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mẫu câu a)!! những câu khác ko lm đc ib!
a) Ta có:
\(A=2+2^2+2^3+2^4+...+2^{2010}.\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{2009}.3\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
Ta có:
\(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{2008}.7\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
b,\(B=3+3^2+3^3+3^4+...+3^{2010}.\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{2009}.4\)
\(=4.\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3+3^2+3^3+3^4+...+3^{2010}\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{2008}.13\)
\(=13\left(3+3^4+...+3^{2008}\right)⋮13\)
A=2 + 22 + 23 + 24 + ......+ 2100
A=(2 + 22) + (23 + 24) + ......+ (299 + 2100)
A=2 . (1+2) + 23 . (1+2) + ....+ 299 . (1+2)
A=2 .3 + 23 . 3 + ....+ 299 . 3
A=3 . (2 + 23 + .. + 299)
=> A chia hết cho 3
A=2 + 22 + 23 + 24 + ......+ 2100
A=(2 + 22) + (23 + 24) + ......+ (299 + 2100)
A=2 . (1+2) + 23 . (1+2) + ....+ 299 . (1+2)
A=2 .3 + 23 . 3 + ....+ 299 . 3
A=3 . (2 + 23 + .. + 299)
=> A chia hết cho 3
P= 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
2P = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28
2P - P = ( 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 ) - ( 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 )
P = 0+0+0+0+0+0 + 28 - 1
P = 28 -1
P = 256 -1
P = 255
Mà 255 chia hết cho 3
nên P chia hết cho 3
Mình làm thiếu 1 bước , mong bạn thông cảm
P = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
= 2( 1 + 2 ) + 22( 1 + 2 ) . 24( 1 + 2 ) . 26( 1 + 2 )
= ( 2 . 3 ) + ( 22 .3 ) + (24 . 3 ) + ( 26 . 3 )
=> P chia hết cho 3
c/m chia hết cho 2 trước:
ta có :A= (3+32)+(33+34)+(35+36)+(37+38)
= 3(1+3)+33(1+3)+35(1+3)+37(1+3)
= 3.4 +33.4+35.4+37.4
= 4(3+33+35+37) chia hết cho 2
vậy A chia hết cho 2
c/m chia hết cho 5:
ta có :
A=(3+32+33+34)+(35+36+37+38)
= 3(1+3+32+33) + 35(1+3+32+33)
=3.40+35.40 chia hết cho 5
vậy A chia hết cho 5
A =3 + 32 + 33 + 34 + 35 + 36 + 37 + 38
A=(3 + 32 + 33 + 34) + (35 + 36 + 37 + 38)
A=3( 30+31 + 32 + 33) +35( 30+31 + 32 + 33)
A=3.40+35.40
A=(3+35).40
Vì 40 chia hết cho 10 nên A chia hết cho 10
=>A chia hết cho 2 và 5
Vậy.......
Để chứng minh A chia hết cho 3 thì nhóm như sau : A = (2 + 2^2) + (2^3 + 2^4) +......+ (2^2009 + 2^2010)
A = (2 + 2^2) + 2^2(2 + 2^2) +......+ 2^2008(2 + 2^2)
A = 6 + 2^2 . 6 + ......+ 2^2008 . 6
A = 6(1 + 2^2 +......+ 2^2008) chia hết cho 3
Để chứng minh A chia hết cho 7 thì ta nhóm như sau :
A = (2 + 2^2 + 2^3) + (2^4 + 2^5 + 2^6)+ ......+ (2^2008 + 2^2009 + 2^2010)
A = (2 + 2^2 + 2^3) + 2^3(2 + 2^2 + 2^3) + ....+ 2^2007(2 + 2^2 + 2^3)
A = 14 + 2^3 . 14 + .....+ 2^2007 . 14 A = 14(1 + 2^3 + .....+ 2^2007) chia hết cho 7
S2 = 2 + 22 + 23 + 24 + ... + 299 + 2100
Tổng S2 có 100 số, nhóm 5 số vào 1 nhóm thì vừa hết.
Ta có:
S2= (2 + 22 + 23 + 24 + 25) + ... + (296 + 297 + 298 + 299 + 2100)
= 2.(1 + 2 + 22 + 23 + 24) + ... + 296. (1 + 2 + 22 + 23 + 24)
= 2. 31 + ... + 296 . 31
= 31 (2 + ...+ 296)
D= 22000 + 22002 = 22000(1 + 22) = 22000.5 = 21990.(210.5) = 21990.5120 chia hết cho 5120
S2 = 2 + 22 + 23 + 24 + ... + 299 + 2100
Tổng S2 có 100 số, nhóm 5 số vào 1 nhóm thì vừa hết.
Ta có:
S2= (2 + 22 + 23 + 24 + 25) + ... + (296 + 297 + 298 + 299 + 2100)
= 2.(1 + 2 + 22 + 23 + 24) + ... + 296. (1 + 2 + 22 + 23 + 24)
= 2. 31 + ... + 296 . 31
= 31 (2 + ...+ 296)
cho 4 số 9và9và9và9 +,-,x,: sao cho bằng 100 ( lưu ý có thể nghép 99)
P = 1 + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
P = 1 + 2 . ( 1 + 2 ) + 2 . ( 1 + 2 ) + 2 . ( 1 + 2 )
P = 1 + 2 . 3 + 2 . 3 + 2 . 3
Mỗi cặp đều có số 3
=> P = 1 + 22 + 23 + 24 + 25 + 26 + 27 chia hết cho 3
\(P=1+2^2+2^3+2^4+2^5+2^6+2^7\)
\(P=1+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(P=1+2^2\left(1+3\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(P=1+2^2.3+2^4.3+2^6.3\)
\(P=\left(1+2^2+2^4+2^6\right).3⋮3\left(đpcm\right)\)