K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2020

địtmẹ thằng ngu


 

5 tháng 5 2018

c. 

Tứ giác IKNC là tứ giác nội tiếp (cmt)=> \(\widehat{IKC}=\widehat{INC}\)(cùng = \(\frac{1}{2}sđ\widebat{IC}\))

Xét đt(O) có: \(\widehat{ABC}=\widehat{ANC=}\widehat{INC}\)(cùng = \(\frac{1}{2}sđ\widebat{NC}\))

=> \(\widehat{ABC}=\widehat{IKC}\)mà 2 góc này ở vị trí đồng vị => IK // HB (dhnb)

Chứng minh tương tự câu a ta có: Tứ giác AMHI là tứ giác nội tiếp => \(\widehat{AHI}=\widehat{AMI}=\widehat{AMC}\)(cùng = \(\frac{1}{2}sđ\widebat{AI}\))

Xét đt(O) có: \(\widehat{ABC}=\widehat{AMC}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)=> \(\widehat{ABC}=\widehat{AHI}\)mà 2 góc này ở vị trí đồng vị => HI // BK

Vì M là điểm chính giữa cung nhỏ \(\widebat{AB}\)(gt) => \(sđ\widebat{AM}=sđ\widebat{BM}\)

Xét đt(O) có: \(\widehat{ACM}=\frac{1}{2}sđ\widebat{AM}\)và \(\widehat{BCM}=\frac{1}{2}sđ\widebat{BM}\)=> \(\widehat{ACM}=\widehat{BCM}\)=> CM là tia phân giác của \(\widehat{ACB}\)

CMTT ta có: AN là tia phân giác của \(\widehat{BAC}\)

Mà 2 dây AN và CM cắt nhau tại I (gt) => BI là tia phân giác của \(\widehat{ABC}\)hay BI là tia phân giác của \(\widehat{HBK}\)

Xét tứ giác BHIK có:

* HI // BK (cmt)

* IK // HB (cmt)

=> tứ giác BHIK là hình bình hành (DHNB)

Mà BI là phân giác của \(\widehat{HBK}\)(cmt) => tứ giác BHIK là hình thoi (dhnb hình thoi)

d. Vì \(\widehat{NBK}=\widehat{BMN}=\widehat{BMK}\left(cmt\right)\)=> BN là tiếp tuyến tại B của đt (P) ngoại tiếp \(\Delta MBK\)=> \(BN\perp BP\)Mà \(BN\perp BD\)do \(\widehat{DBN}=90^o\)(góc nội tiếp chắn nửa đt) => B, P , D thẳng hàng

Tương tự ta có: C, Q, D thẳng hàng

\(\Delta BPK\)và \(\Delta DBC\)là 2 tam giác cân có chung góc ở đáy => góc ở đỉnh của chúng bằng nhau => \(\widehat{BPK}=\widehat{BDC}\)Mà 2 góc này ở vị trí đồng vị => PK // DC (dhnb) => PK // DQ

CMTT ta có: DP // QK => DPKQ  là hình bình hành (dhnb HBH) => DK đi qua trung điểm của PQ => D, E, K thẳng hàng (đpcm)

5 tháng 5 2018

a. Vì M là điểm chính giữa cung nhỏ \(\widebat{AB}\)(gt) => \(sđ\widebat{AM}=sđ\widebat{MB}\)=> \(\widehat{ACM}=\widehat{BCM}\)(2 góc nội tiếp chắn 2 cung = nhau)

Lại có: \(\widehat{ACM}=\widehat{ANM}\)(CÙNG = \(\frac{1}{2}sđ\widebat{AM}\))  => \(\widehat{MNA}=\widehat{BCM}\)hay \(\widehat{KNI}=\widehat{KCI}\)(Do M,K,N và A,I,N => \(\widehat{MNA}=\widehat{KNI}\)M,I,C và B,K,C => \(\widehat{BCM}=\widehat{KCI}\)) => IKNC là tứ giác nội tiếp (Dấu hiệu nhận biết)

b. Xét đường tròn (O) có: \(\widehat{BMN}=\frac{1}{2}sđ\widebat{BN}\)và \(\widehat{NBC}=\widehat{NBK}=\frac{1}{2}sđ\widebat{NC}\)

mà N là điểm chính giữa cung nhỏ \(\widebat{BC}\)(gt) => sđ \(\widebat{BN}\)= sđ \(\widebat{NC}\)=> \(\widehat{BMN}=\widehat{NBK}\)

Xét \(\Delta BMN\)và \(\Delta KBN\)có:

\(\widehat{N}\)chung

\(\widehat{BMN}=\widehat{NBK}\)(cmt)

=> \(\Delta BMN~\Delta KBN\)(g.g) => \(\frac{NB}{NK}=\frac{NM}{NB}\)<=> \(NB^2=NK.NM\)(đpcm)

7 tháng 11 2017

Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l

a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)

Vậy tam giác ABC là tam giác vuông tại C.

b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\) 

Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.

Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.

c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:

\(EC.EA=BE^2\)

Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:

\(BE^2=OE^2-OB^2=OE^2-R^2\)

Vậy ta có ngay \(EC.EA=OE^2-R^2\)

d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:

\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)

Lại có NH = HC nên BF = FE

Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.

Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)

hay CF là tiếp tuyến của đường tròn (I)