K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

a,

Đường thẳng qua O vuông góc AB,CD cắt AB,CD tại H,K

Suy ra H,K là trung điểm AB,CD (OAB,OCD cân tại O)

Do đó \(\left\{{}\begin{matrix}AH=\dfrac{1}{2}AB=3\\DK=\dfrac{1}{2}CD=4\end{matrix}\right.\)

Áp dụng PTG: \(\left\{{}\begin{matrix}OH=\sqrt{OA^2-AH^2}=4\\OK=\sqrt{OD^2-DK^2}=3\end{matrix}\right.\)

\(\Rightarrow HK=7\)

Vậy ...

12 tháng 11 2021

em nghe bạn nói có 2 TH

19 tháng 10 2018

Sửa lại đề của bạn là:

Cho đường tròn tâm O đường kính AB=2R. Dây cung CD không đi qua tâm O sao cho góc COD=90 độ. CD cắt AB ở E (D nằm giữa E và C ) sao cho OE=2R . Tính EC và ED theo R.

Bài làm:

O O B B A A E E C C D D M M N N

Kẻ \(OM\perp CE\)và \(BN\perp CE\). Khi đó

Do COD là tam giác vuông cân nên \(CD=R\sqrt{2}\)và \(OM=MD=\frac{R\sqrt{2}}{2}\)

Ta có EB = BO và BN // OM nên EN = MN

suy ra NB là đường trung bình của tam giác vuông EMO nên \(NB=\frac{OM}{2}=\frac{R\sqrt{2}}{4}\)

Xét tam giác vuông ENB có \(EN=\sqrt{EB^2-BN^2}=\sqrt{R^2-\frac{2R^2}{4^2}}=\frac{R\sqrt{14}}{4}\)

mà MN = EN suy ra

\(DN=MN-MD=\frac{R\sqrt{14}}{4}-\frac{R\sqrt{2}}{2}=\frac{R\sqrt{14}-2R\sqrt{2}}{4}\)

Vậy \(ED=EN+ND=\frac{R\sqrt{14}}{4}+\frac{R\sqrt{14}-2R\sqrt{2}}{4}=\frac{R\sqrt{14}-R\sqrt{2}}{2}\)

\(EC=ED+DC=\frac{R\sqrt{14}-R\sqrt{2}}{2}+R\sqrt{2}=\frac{R\sqrt{14}+R\sqrt{2}}{2}\)