Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ không vẽ hình vì sợ duyệt.
Vì (O) có bán kính 10cm nên \(OA=10cm\)
Gọi OH là khoảng cách từ O đến AB, khi đó theo quan hệ vuông góc giữa đường kính và dây, ta có H là trung điểm AB, từ đó \(AB=2AH\)
Đồng thời, \(OH=8cm\)
\(\Delta OAH\)vuông tại H \(\Rightarrow AH=\sqrt{OA^2-OH^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)
\(\Rightarrow AB=2AH=2.6=12\left(cm\right)\)
\(\Rightarrow\)Chọn A
Xét (O) có
OH là một phần đường kính
AB là dây
OH\(\perp\)AB tại H
Do đó: H là trung điểm của AB
=>AH=AB/2=6(cm)
Xét ΔOHA vuông tại H có
\(OA^2=OH^2+AH^2\)
hay OH=8cm
Lời giải:
Gọi dây trên là dây AB. Hạ OH⊥⊥AB = {H} (cd)
Xét (O) 1 phần đường kính OH: OH⊥⊥AB = {H} (cd)
=> H là trung điểm AB (đl) => HA = HB = AB: 2 = 12:2 = 6 (cm)
OH⊥⊥AB = {H} (cd) => ΔΔOHB vuông tại H (đn)
=> OH22+ HB22= OB22(Đl Py-ta-go)
T/s: OH22+ 622= R22
<=> OH22+36 = 1022=100
<=> OH22= 64 => OH = 8 (cm)
Gọi H là chân đường cao kẻ từ O
=> H là trung điểm AB
=> AH = AB/2 = 12/2 = 6 cm
Theo định lí Pytago cho tam giác AOH vuông tại H
\(AO^2=OH^2+AH^2\Rightarrow OH^2=AO^2-AH^2=100-36=64\Rightarrow OH=8\)cm
Đáp án: B. 8cm
Lời giải:
Gọi dây trên là dây AB. Hạ OH\(\perp\)AB = {H} (cd)
Xét (O) 1 phần đường kính OH: OH\(\perp\)AB = {H} (cd)
=> H là trung điểm AB (đl) => HA = HB = AB: 2 = 12:2 = 6 (cm)
OH\(\perp\)AB = {H} (cd) => \(\Delta\)OHB vuông tại H (đn)
=> OH\(^2\)+ HB\(^2\)= OB\(^2\)(Đl Py-ta-go)
T/s: OH\(^2\)+ 6\(^{^2}\)= R\(^2\)
<=> OH\(^2\)+36 = 10\(^2\)=100
<=> OH\(^2\)= 64 => OH = 8 (cm)
\(^2\)