K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

A B C I K D O S x

a) Ta có đuờng tròn (I) tiếp xúc với AC tại A, theo tính chất góc tạo bởi tiếp tuyến và dây thì ^DAC = ^DBA

Tuơng tự ^DAB = ^DCA. Do đó ^BDC = ^DAB + ^DAC + ^DBA + ^DCA = 2(^DAB + ^DAC) = 2.^BAC = ^BOC

Suy ra 4 điểm B,D,O,C cùng thuộc một đuờng tròn theo quỹ tích cung chứa góc (đpcm).

b) Gọi đuờng thẳng AD cắt đường tròn đi qua 4 điểm B,O,D,C tại S khác D. Ta sẽ chỉ ra S cố định.

Thật vậy, gọi Dx là tia đối của tia DB. Ta có ^ODC = ^OBC = ^OCB = ^ODx => DO là phân giác ^CDx

Ta thấy hai đuờng tròn (O) và (I) cắt nhau tại A và B nên OI vuông góc AB

Mà AK vuông góc với AB (vì (K) tiếp xúc AB tại A) nên OI // AK. Tuơng tự OK // AI

Từ đây tứ giác AIOK là hình bình hành => IK chia đôi OA. Cũng dễ thấy IK là trung trực của AD

Theo đó IK chứa đuờng trung bình của \(\Delta\)AOD => IK // OD. Mà IK vuông góc AD nên OD vuông góc AD

Kết hợp với OD là phân giác của ^CDx => AD là phân giác của ^BDC (do ^CDx và ^BDC bù nhau)

Hay DS là phân giác của ^BDC. Lại có ^BDC là góc nội tiếp đuờng tròn đi qua B,D,O,C

=> S là điểm chính giữa (BC không chứa O của đuờng tròn (BOC)

Vì B,O,C cố định nên điểm chính giữa (BC không chứa O của (BOC) cố định => S cố định

Vậy AD luôn đi qua S cố định (đpcm).

9 tháng 7 2019

A B C O I D M K S H

a) Ta có CA,CM là các tiếp tuyến từ C tới đường tròn (O) => OC là phân giác của ^AOM => ^MOC = ^AOC

Ta thấy ^CMD là góc chắn nửa đường tròn (I) => ^CMD = 900 => ^CMD + ^CMO = 1800

=> 3 điểm D,M,O thẳng hàng => ^DOC = ^MOC. Mà ^MOC = ^AOC nên ^DOC = ^AOC

Hai đường tròn (O),(I) cùng tiếp xúc với a => CD // AB (Cùng vuông góc với a)

Do đó ^AOC = ^DCO (So le trong) => ^DOC = ^DCO => \(\Delta\)ODC cân tại D

Lại có DK vuông góc OC tại K (Vì ^DKC chắn nửa đường tròn) => K là trung điểm OC (đpcm).

b) Gọi đường thẳng qua D vuông góc với BC cắt BC,AB lần lượt tại H,S.

Dễ thấy điểm H nằm trên đường tròn (I) => ^HMO = ^HCD = ^HBO (Do CD // AB)

=> Tứ giác HOBM nội tiếp => ^OHB = ^OMB => 900 - ^OHB = 900 - ^OMB

=> ^OHS = 900 - ^ABM = ^MAB = ^ACO (Cùng phụ ^CAM)    (1)

Ta lại có ^SHK = ^DCK = ^SOK (Vì AB // CD) => Tứ giác KHOS nội tiếp => ^OHS = ^OKS (2)

Từ (1) và (2) suy ra ^ACO = ^OKS => KS // AC. Xét \(\Delta\)CAO có:

K là trung điểm cạnh OC (cmt), KS // AC (cmt), S thuộc OA => S là trung điểm cạnh OA

Do 2 điểm O,A cố định nên S cũng cố định. Mà đường thẳng qua D vuông góc BC cắt OA tại S

Nên ta có ĐPCM.

3 tháng 11 2018

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)