Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{OBA}+\widehat{OCA}=90^o\)
=> OBAC nội tiếp
b) Xét tam giác AEB và tam giác ABD
Có: \(\widehat{BAD}\)chung
\(\widehat{ADB}=\widehat{ABE}=\frac{1}{2}sđ\widebat{BE}\)
=> Tam giác AEB đồng dạng tam giác ABD (g.g)
=> \(\frac{AE}{AB}=\frac{AB}{AD}\)=>AB2=AE.AD (đpcm)
c) Kẽ BE cắt AC tại S
CE cắt AB tại P
Ta có:\(\hept{\begin{cases}\widehat{BEP}=\widehat{CES}=\frac{1}{2}sđ\widebat{BC}\\\widehat{AEP}=\widehat{CED}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)(1)
Mặt khác: \(\hept{\begin{cases}\widehat{BDC}=\widehat{BCA}=\frac{1}{2}sđ\widebat{BC}\\\widehat{DBC}=\widehat{BCA}\left(slt\right)\end{cases}}\)
=> \(\widehat{BDC}=\widehat{DBC}\)
=> Tam giác BDC cân tại C
=> CD=BC
=> \(\widebat{CD}=\widebat{BC}\)(2)
Từ (1),(2) => \(\widehat{BEP}=\widehat{AEP}\)
=> Tia đổi của tia EC là tia phân giác của góc BEA
a. Ta có: \(\Lambda\)ABO=90 ( do AB là tiếp tuyến của (O))
\(\Lambda\)ACO=90 ( do AC là tiếp tuyến của (O))
\(\Rightarrow\) \(\Lambda\)ABO + \(\Lambda\)ACO = 90 + 90 = 180.
Suy ra: tứ giác ABOC nội tiếp.
b. Ta có: AB,AC lần lượt là tiếp tuyến của (O) nên AB=AC.
\(\Rightarrow\)\(\Delta\)ABC cân tại A lại có AH là tia phân giác nên AH cũng là đường cao
\(\Rightarrow\)AO\(\perp\)BC tại H.
Áp dụng đinh lý Py-ta-go vào \(\Delta\)ABO ta có:
AO2 = AB2 + BO2 = 42 + 32 = 25
\(\Rightarrow\)AO = 5 (cm).
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ABO ta được:
AB2 = AH.AO \(\Rightarrow\) AH = \(\dfrac{AB^2}{AO}\)=\(\dfrac{16}{5}\)(cm)
c. Ta có: \(\Lambda\)ACE=\(\Lambda\)ADC ( tính chất của góc tạo bởi tia tiếp tuyến và dây cung )
Xét \(\Delta\)ACE và \(\Delta\)ADC có:
\(\Lambda ACE=\Lambda ADC\)
\(\Lambda\)CAD chung
Do đó: \(\Delta ACE\sim\Delta ADC\) \(\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AC}\) \(\Rightarrow\)AC2 = AD.AE (1)
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ACO có:
AC2 = AH.AO (2)
Từ (1) và (2) ,suy ra: AD.AE = AH.AO.
a)Ta có:\(\widehat{ABO};\widehat{ACO}\) lần lượt là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ABO=}\widehat{ACO}=90^{ }\)
\(\Rightarrow\widehat{ABO}+\widehat{ACO}=90+90=180\)
Mà hai góc này đối nhau nên tứ giác ABOC nội tiếb)
b)Theo a) ta có:\(\widehat{ABO}=90\)⇒▲ABO là tam giác vuông tại B đường cao AH.
Áp dụng định lí pytago vào tam giác vuông ABO đường cao AH ta có:
\(AO^2=AB^2+BO^2=4^2+3^2=25\)
\(\Rightarrow\sqrt{AO}=5\) cm.
Áp dụng hệ thức lượng giữa cạnh và đường cao trong ▲vuông ABO ta có:
\(AB^2=AH\cdot AO\)
\(\Rightarrow AH=\dfrac{AB^2^{ }}{AO}=\dfrac{4^2^{ }}{5}=\dfrac{16}{5}\)
a: Xét tứ giác ABOC có góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét (OA/2) có
góc ACB là góc nội tiếp chắn cung AB
gsóc AOC là góc nội tiếp chắn cung AC
sđ cung AB=sđ cug AC
Do đó góc ACB=góc AOC
c: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
Do đó: ΔABE đồng dạng với ΔADB
Suy ra: AB/AD=AE/AB
hay \(AB^2=AE\cdot AD\)
O A B C D E H F
a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)
Xét tam giác vuông ABC, đường cao BD ta có:
\(AB^2=AD.AC\) (Hệ thức lượng)
b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.
Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)
Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Hay AB = AE.
Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)
Vậy AE là tiếp tuyến của đường tròn (O)
c) Xét tam giác vuông OBA đường cao BH, ta có:
\(OB^2=OH.OA\) (Hệ thức lượng)
\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)
Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)
d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)
Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)
Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.
Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:
\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)
ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu