K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

D đâu ra zậy

12 tháng 2 2016

vẽ hình rồi làm, mình ko vẽ được

tich ủng hộ nha

20 tháng 4 2016

bạn có biết giải bài này ko ạ???

17 tháng 5 2016

Bạn có lời giải chưa v ? Tớ đang cần câu này phần 4 ạ 

24 tháng 4 2019

a) Ta có: \(\widehat{OBA}+\widehat{OCA}=90^o\)

=> OBAC nội tiếp

b) Xét tam giác AEB và tam giác ABD

    Có: \(\widehat{BAD}\)chung

          \(\widehat{ADB}=\widehat{ABE}=\frac{1}{2}sđ\widebat{BE}\)

=> Tam giác AEB đồng dạng tam giác ABD (g.g)

=> \(\frac{AE}{AB}=\frac{AB}{AD}\)=>AB2=AE.AD (đpcm)

c) Kẽ BE cắt AC tại S

          CE cắt AB tại P

    Ta có:\(\hept{\begin{cases}\widehat{BEP}=\widehat{CES}=\frac{1}{2}sđ\widebat{BC}\\\widehat{AEP}=\widehat{CED}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)(1)

Mặt khác: \(\hept{\begin{cases}\widehat{BDC}=\widehat{BCA}=\frac{1}{2}sđ\widebat{BC}\\\widehat{DBC}=\widehat{BCA}\left(slt\right)\end{cases}}\)

=> \(\widehat{BDC}=\widehat{DBC}\)

=> Tam giác BDC cân tại C

=> CD=BC 

=> \(\widebat{CD}=\widebat{BC}\)(2)

Từ (1),(2) => \(\widehat{BEP}=\widehat{AEP}\)

=> Tia đổi của tia EC là tia phân giác của góc BEA

9 tháng 5 2021

a.  Ta có: \(\Lambda\)ABO=90 ( do AB là tiếp tuyến của (O))
                \(\Lambda\)ACO=90 ( do AC là tiếp tuyến của (O))
     \(\Rightarrow\) \(\Lambda\)ABO + \(\Lambda\)ACO = 90 + 90 = 180.

     Suy ra: tứ giác ABOC nội tiếp.

b.  Ta có: AB,AC lần lượt là tiếp tuyến của (O) nên AB=AC.

     \(\Rightarrow\)\(\Delta\)ABC cân tại A lại có AH là tia phân giác nên AH cũng là đường cao

     \(\Rightarrow\)AO\(\perp\)BC tại H.

     Áp dụng đinh lý Py-ta-go vào \(\Delta\)ABO ta có:

         AO2 = AB2 + BO2 = 42 + 32 = 25

     \(\Rightarrow\)AO = 5 (cm).

     Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ABO ta được:

         AB2 = AH.AO \(\Rightarrow\) AH = \(\dfrac{AB^2}{AO}\)=\(\dfrac{16}{5}\)(cm)

c.  Ta có: \(\Lambda\)ACE=\(\Lambda\)ADC ( tính chất của góc tạo bởi tia tiếp tuyến và dây cung )

     Xét \(\Delta\)ACE và \(\Delta\)ADC có:

     \(\Lambda ACE=\Lambda ADC\) 

     \(\Lambda\)CAD chung

     Do đó: \(\Delta ACE\sim\Delta ADC\) \(\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AC}\) \(\Rightarrow\)AC2 = AD.AE (1)

     Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ACO có:

                    AC2 = AH.AO (2)

    Từ (1) và (2) ,suy ra: AD.AE = AH.AO.

    

9 tháng 5 2021

a)Ta có:\(\widehat{ABO};\widehat{ACO}\) lần lượt là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ABO=}\widehat{ACO}=90^{ }\)

\(\Rightarrow\widehat{ABO}+\widehat{ACO}=90+90=180\)

Mà hai góc này đối nhau nên tứ giác ABOC nội tiếb)

b)Theo a) ta có:\(\widehat{ABO}=90\)⇒▲ABO là tam giác vuông tại B đường cao AH.

Áp dụng định lí pytago vào tam giác vuông ABO đường cao AH ta có:

\(AO^2=AB^2+BO^2=4^2+3^2=25\)

\(\Rightarrow\sqrt{AO}=5\) cm.

Áp dụng hệ thức lượng giữa cạnh và đường cao trong ▲vuông ABO ta có:

\(AB^2=AH\cdot AO\)

\(\Rightarrow AH=\dfrac{AB^2^{ }}{AO}=\dfrac{4^2^{ }}{5}=\dfrac{16}{5}\)

a: Xét tứ giác ABOC có góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét (OA/2) có

góc ACB là góc nội tiếp chắn cung AB

gsóc AOC là góc nội tiếp chắn cung AC

sđ cung AB=sđ cug AC

Do đó góc ACB=góc AOC

c: Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

Do đó: ΔABE đồng dạng với ΔADB

Suy ra: AB/AD=AE/AB

hay \(AB^2=AE\cdot AD\)

15 tháng 12 2017

O A B C D E H F

a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)

Xét tam giác vuông ABC, đường cao BD ta có:

\(AB^2=AD.AC\)  (Hệ thức lượng)

b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.

Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)

Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Hay AB = AE.

Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)

Vậy AE là tiếp tuyến của đường tròn (O)

c) Xét tam giác vuông OBA đường cao BH, ta có:

\(OB^2=OH.OA\) (Hệ thức lượng)

\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)

Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)

d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)

Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)

Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.

Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:

\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)

15 tháng 12 2017

ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu