K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2024

ko thấy ai trả lời, chắc ko ai biết làm bài này

2 tháng 3 2024

Tr oii câu này ra lâu lắm rồi mà chả có ai trả lời. Chắc bây giờ bn í tầm 17 tuổi r ^_^

5 tháng 5 2017

c. Gọi DK là đường cao của \(\Delta DPQ\)\(\left(K\in PQ\right)\)

F là giao điểm của DK với (O)\(\left(F\ne D\right)\)

Ta có: \(\widehat{OCA}=\widehat{OKA}=90^0\)

\(\Rightarrow\)Tứ giác OCAK nội tiếp.

\(\Rightarrow\widehat{COK}+\widehat{CAK}=180^0\)

Mà \(\widehat{COK}+\widehat{COF}=180^0\)

\(\Rightarrow\widehat{CAK}=\widehat{COF}\)

\(\Rightarrow\widehat{CAK}=180^0-\left(\widehat{FCO}+\widehat{CFO}\right)=180^0-2\widehat{FCO}\)(Vì \(\Delta OFC\) cân tại O (OC=OF))

Ta có: \(\widehat{FCD}=90^0\)(góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\widehat{FCO}+\widehat{OCD}=90^0\)

Lại có:\(\widehat{OCA}=\widehat{OCD}+\widehat{ACD}=90^0\)(tính chất tiếp tuyến)

\(\Rightarrow\widehat{FCO}=\widehat{ACD}\)

\(\Delta CAQ\) có: \(\widehat{CAQ}+\widehat{ACD}+\widehat{AQC}=180^0\)

\(\Rightarrow180^0-2\widehat{FCO}+\widehat{FCO}+\widehat{AQC}=180^0\)

\(\Leftrightarrow\widehat{AQC}=\widehat{FCO}=\widehat{ACQ}\)

\(\Rightarrow\Delta CAQ\)cân tại A.

Lại có: AC=AB (Tính chất tiếp tuyến)

AB=AP(\(\Delta ABP\) cân tại A)

\(\Rightarrow AP=AC=AB=AQ\)

\(\Delta CPQ\)có: \(A\in PQ;AP=AC=AQ\)

\(\Rightarrow\Delta CPQ\)vuông tại C.

=>F,C,P thẳng hàng.

=> PC là đường cao của \(\Delta DPQ\)(\(C\in DQ\))

=> F là trực tâm của \(\Delta DPQ\)

=> F trùng với H.

Mà F thuộc (O)

=> H thuộc (O)

6 tháng 5 2017

Trực tâm H chứ bạn?

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)a, Chứng minh MA. MB = ME.MFb, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếpc, Trên nửa mặt phẳng bờ OM có chứa...
Đọc tiếp

Cho đường tròn (O) điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME < MF).Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO)

a, Chứng minh MA. MB = ME.MF

b, Gọi H là hình chiêu vuông góc của điểm c lên đuờng thẳng MO. Chứng minh tứ giác AHOB nội tiếp

c, Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh các đường thẳng MSKC vuông góc nhau

d, Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFSABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng

1
20 tháng 9 2018

a, HS tự chứng minh

b, MH.MO = MA.MB ( =  M C 2 )

=> ∆MAH:∆MOB (c.g.c)

=>  M H A ^ = M B O ^

M B O ^ + A H O ^ = M H A ^ + A H O ^ = 180 0

=> AHOB nội tiếp

c, M K 2  = ME.MF = M C 2  Þ  MK = MC

∆MKS = ∆MCS (ch-cgv) => SK = SC

=> MS là đường trung trực của KC

=> MS ^ KC tại trung của CK

d, Gọi MS ∩ KC = I

MI.MS = ME.MF =  M C 2  => EISF nội tiếp đường tròn tâm P Þ PI = PS. (1)

MI.MS = MA.MB (=  M C 2 ) => AISB nội tiếp đường tròn tâm Q Þ QI = QS. (2)

Mà IT = TS = TK (do DIKS vuông tại I). (3)

Từ (1), (2) và (3) => P, T, Q thuộc đường trung trực của IS => P, T, Q thẳng hàng