K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

cậu tự vẽ hình nhé tớ giải cho :

ta có : \(OA+OC\ge AC\)

          \(OB+OD\ge BD\)

=> \(OA+OB+OC+OD\ge AC+BD\)

Min của OA+OB+OC+OD là AC+BD <=> O là giao điểm của 2 đường chéo

2 tháng 9 2018

cảm ơn nhé Luffy 123

19 tháng 8 2018

➜Câu hỏi của Lam Vu Thien Phuc - Toán lớp 8 - Học toán với OnlineMath

6 tháng 7 2015

Gọi BH là đường cao của ∆ABO

Ta có 2SAOB = OA . BH

Nhưng BH ≤ BO nên  2SAOB ≤ OA . OB

mà OA.OB

Do đó 2SAOB 

Dấu “=” xảy ra  OA  OB và OA = OB

Chứng minh tương tự ta có:

 

2SBOC  ;   2SCOD

2SAOD

Vậy 2S = 2(SAOB + SBOC + SCOD + SDOA) ≤

Hay 2S ≤ OA2 + OB2 + OC2 + OD2

Dấu bằng xẩy ra khi và chỉ khi OA = OB = OC = OD

và  là hình vuông tâm O.

12 tháng 11 2021

o giả thiết cho IJ không song song với CDvà chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.

Gọi K=IJ∩CDK=IJ∩CD.

Ta có : M là điểm chung thứ nhất của (ACD) và (IJM);

{K∈IJIJ⊂(MIJ)⇒K∈(MIJ){K∈IJIJ⊂(MIJ)⇒K∈(MIJ) và  {K∈CDCD⊂(ACD)⇒K∈(ACD){K∈CDCD⊂(ACD)⇒K∈(ACD)

Vậy (MIJ)∩(ACD)=MK(MIJ)∩(ACD)=MK

Quảng cáo

b) Với L=JN∩ABL=JN∩AB ta có:

{L∈JNJN⊂(MNJ)⇒L∈(MNJ){L∈JNJN⊂(MNJ)⇒L∈(MNJ)

{L∈ABAB⊂(ABC)⇒L∈(ABC){L∈ABAB⊂(ABC)⇒L∈(ABC)

Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)

Gọi P=JL∩AD,Q=PM∩ACP=JL∩AD,Q=PM∩AC

Ta có: 

{Q∈PMPM⊂(MNP)⇒Q∈(MNJ){Q∈PMPM⊂(MNP)⇒Q∈(MNJ)

Và {Q∈ACAC⊂(ABC)⇒Q∈(ABC){Q∈ACAC⊂(ABC)⇒Q∈(ABC)

Nên Q là điểm chung thứ hai của (MNJ) và (ABC)

Vậy LQ=(ABC)∩(MNJ)LQ=(ABC)∩(MNJ).

12 tháng 11 2021

ko hiểu nhưng thôi k vậy   >:(