Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.
Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)
Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)
Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)
Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)
b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)
Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\). \(\Delta O_2OO_1\)vuông cân tại \(O_2\)
Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)
.Vậy diện tích \(\Delta O_2OO_1\) là\(\frac{5R^2}{8}\)
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
a) Theo t/c 2 tiếp tuyến cắt nhau, ta có
góc AOC = góc COM
góc MOD = góc DOB
=> COM +MOD =AOC +BOD = 1/2 AOB = 90o (đpcm)
b) Xét tam giác AOC và tg BDO
Có góc AOC = góc BDO ( cùng phụ BOD)'
góc ACO = góc BOD ( cùng phụ AOC )
=> tg AOC đồng dạng tg BDO (gg)
=> \(\frac{AC}{AO}=\frac{BO}{BD}\Rightarrow AC.BD=AO.BO=R^2\)
O M B A C H N
G/s N thuộc đoạn thẳng AB
a) Ta có AC, AB là tiêp tuyến (O)
=> AC=AB=R
Xét tứ giác ABCO có:
AC=AB=BO=CO=R
=> ABCO là hình thoi
mặt khác \(\widehat{ABO}=90^o\)
=> ABCO là hình vuông
=> A,B,C,O cùng thuộc một đường tròn
Tứ giác BHAC nội tiếp vì \(\widehat{BHC}=\widehat{BAC}=\left(90^o\right)\)
=> A,B,C,H cùng thuộc một đường tròn
=> O, B, A, C, H cùng thuộc một đường tròn
b) \(AN.OM=\left(AB-BN\right)\left(MB+BO\right)=AB.BO-BN.BO+MB.\left(AB-BN\right)\)
\(=R^2-BN.R+MB.AN\)(1)
Ta có:
AC//MB => \(\frac{AN}{BN}=\frac{AC}{MB}\Rightarrow AN.BM=AC.BN\Rightarrow AN.BM=R.BN\)(2)
(1), (2) => AN. OM=R^2
c) Đặt AN =x
=> BN=AB-BN=R-x
và MO=\(\frac{R^2}{AN}=\frac{R^2}{x}\Rightarrow BM=\frac{R^2}{x}-R\)
Diện tích tam giác BMH =\(\frac{1}{2}\left(R-x\right)\left(\frac{R^2}{x}-R\right)=\frac{9R^2}{4}\)
<=> \(\frac{\left(R-x\right)^2}{x}=\frac{9R}{2}\)
<=> \(R^2-\frac{13}{2}Rx+x^2=0\)
<=> \(\left(x-\frac{13}{4}R\right)^2=\frac{153}{16}R^2\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{17}+13}{4}R\left(loai\right)\\x=\frac{-3\sqrt{17}+13}{4}R\left(tm\right)\end{cases}}\)
Tìm đc AN => tìm đc OM
TH M thuộc đoạn thẳng BO tương tự