K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2019

O M B A C H N

G/s N thuộc đoạn thẳng AB

a) Ta có AC, AB là tiêp tuyến (O)

=> AC=AB=R

Xét tứ giác ABCO có: 

AC=AB=BO=CO=R

=> ABCO là hình thoi

mặt khác \(\widehat{ABO}=90^o\)

=> ABCO là hình vuông

=> A,B,C,O cùng thuộc một đường tròn

Tứ giác BHAC nội tiếp vì \(\widehat{BHC}=\widehat{BAC}=\left(90^o\right)\)

=> A,B,C,H cùng thuộc một đường tròn

=> O, B, A, C, H cùng thuộc một đường tròn

b) \(AN.OM=\left(AB-BN\right)\left(MB+BO\right)=AB.BO-BN.BO+MB.\left(AB-BN\right)\)

\(=R^2-BN.R+MB.AN\)(1)

Ta có:

 AC//MB => \(\frac{AN}{BN}=\frac{AC}{MB}\Rightarrow AN.BM=AC.BN\Rightarrow AN.BM=R.BN\)(2)

(1), (2) => AN. OM=R^2

c) Đặt AN =x

=> BN=AB-BN=R-x

và MO=\(\frac{R^2}{AN}=\frac{R^2}{x}\Rightarrow BM=\frac{R^2}{x}-R\)

Diện tích tam giác BMH =\(\frac{1}{2}\left(R-x\right)\left(\frac{R^2}{x}-R\right)=\frac{9R^2}{4}\)

<=> \(\frac{\left(R-x\right)^2}{x}=\frac{9R}{2}\)

<=> \(R^2-\frac{13}{2}Rx+x^2=0\)

<=> \(\left(x-\frac{13}{4}R\right)^2=\frac{153}{16}R^2\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{17}+13}{4}R\left(loai\right)\\x=\frac{-3\sqrt{17}+13}{4}R\left(tm\right)\end{cases}}\)

Tìm đc AN => tìm đc OM

TH M thuộc đoạn thẳng BO tương tự

20 tháng 12 2023

loading... loading... 

14 tháng 7 2020

a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.

Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)

Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)

Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)

Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)

b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)

Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\)\(\Delta O_2OO_1\)vuông cân tại \(O_2\)

Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)

.Vậy diện tích \(\Delta O_2OO_1\)  là\(\frac{5R^2}{8}\)

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400a) Tính góc AOBb) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cânBài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba...
Đọc tiếp

Bài 1: Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA và MB (A,B là tiếp điểm ). Cho biết góc AMB bằng 400

a) Tính góc AOB

b) Từ O kẽ đường thẳng vuông góc OA cắt MB tại N. Chứng minh tam giác OMN là tam giác cân

Bài 2 Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn , nó cắt Ax , By lần lượt tai C và D

a) chứng minh : Tam giác COD là tam giác vuông

b)Chứng minh : MC.MD=OM2

c) Cho biết OC=BA=2R, tính AC và BD theo R

Bài 3 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài với nhau tại B. Vẽ đường kính AB của đường tròn (O) và đường kính BC của đường tròn (O'). Đường tròn đường kính OC cắt (O) tại M và N

a)Đường thẳng CM cắt (O') tại P Chứng minh : OM////BP

b) Từ C kẽ đường thẳng vuông góc với CM cắt tia ON tại D . Chứng minh : Tam giác OCD là tam giác cân

1

Bài 2:

a: Xét (O) có

CM,CA là tiếp tuyến

nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

b:

Xét ΔCOD vuông tại O có OM là đường cao

nên MC*MD=OM^2

c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

 

15 tháng 12 2016

cố gắng làm hết

giúp mình câu d nha

29 tháng 11 2018

a) Theo t/c 2 tiếp tuyến cắt nhau, ta có

góc AOC = góc COM 

góc MOD = góc DOB

=> COM +MOD =AOC +BOD = 1/2 AOB = 90o (đpcm)

b) Xét tam giác AOC và tg BDO

Có góc AOC = góc BDO ( cùng phụ BOD)'

      góc ACO = góc BOD ( cùng phụ AOC )

=> tg AOC đồng dạng tg BDO (gg)

=> \(\frac{AC}{AO}=\frac{BO}{BD}\Rightarrow AC.BD=AO.BO=R^2\)