Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ nói gợi ý thôi, bạn tự phát triển nhé:
Câu a)
- CM: \(MO\)song song với \(NB\).
- CM: tam giác \(MAO\) và \(NOB\) bằng nhau.
- CM: \(OMNB\) là hình bình hành.
Câu b)
- CM: \(MAON\)là hình chữ nhật.
- CM: \(H\) là giao của \(MO\) và \(AN\)
- Gọi \(D\) là hình chiếu của \(H\) lên \(AB\). CM: \(D\) là trung điểm \(AO\).
- CM: \(H\) di động trên đường cố định.
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.
a) Tứ giác ACMD là hình thoi vì có 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
b) OI là đường trung trực của tam giác cân COD nên góc COI = góc DOI.
=> \(\Delta OCI=\Delta ODI\)(c.g.c) => góc ODI = góc OCI = 90o, do đó ID cắt OD.
Vậy ID là tiếp tuyến của đường tròn (O).
a) Ta có CD vuông góc với AM tại trung điểm (1)
=> OA vuông góc với CD tại trung điểm
=>> AM vuông góc với CD tại trung điểm (2)
Từ (1), (2)=> ACMD là hình thoi
a: Xét (O) có
MA,MC là tiếp tuyến
Do đó: MA=MC
=>M nằm trên đường trung trực của AC(1)
OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra MO là đường trung trực của AC
=>MO\(\perp\)AC
b: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
=>AC\(\perp\)CB
mà AC\(\perp\)MO
nên MO//CB
=>MO//NB
c: Xét ΔMAO vuông tại A và ΔNOB vuông tại O có
AO=OB
\(\widehat{MOA}=\widehat{NBO}\)(MO//NB)
Do đó: ΔMAO=ΔNOB
=>MO=NB
Xét tứ giác MOBN có
MO//BN
MO=BN
Do đó: MOBN là hình bình hành