K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC và OE là phân giác của \(\widehat{AOC}\)

EA=EC

=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

b: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=4R^2\)

c: \(\widehat{EAC}+\widehat{EDC}=90^0\)(ΔACD vuông tại C)

\(\widehat{ECA}+\widehat{ECD}=\widehat{ACD}=90^0\)

mà \(\widehat{EAC}=\widehat{ECA}\)

nên \(\widehat{EDC}=\widehat{ECD}\)

=>ED=EC

mà EC=EA

nên EA=ED
d: Xét ΔOCF và ΔOBF có

OC=OB

CF=BF

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>FB là tiếp tuyến của (O)

e: ΔOBF=ΔOCF

=>\(\widehat{BOF}=\widehat{COF}\)

=>OF là phân giác của \(\widehat{COB}\)

=>\(\widehat{COB}=2\cdot\widehat{COF}\)

\(\widehat{EOF}=\widehat{EOC}+\widehat{FOC}\)

\(=\dfrac{1}{2}\left(\widehat{COA}+\widehat{COB}\right)\)

\(=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔEOF vuông tại O

18 tháng 12 2023

Xét (O) có

EA,EC là các tiếp tuyến

Do đó: EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại M

Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Xét tứ giác CMON có \(\widehat{CMO}=\widehat{CNO}=\widehat{MCN}=90^0\)

nên CMON là hình chữ nhật

=>C,M,O,N cùng thuộc đường tròn đường kính CO(1)

Ta có: ΔCHO vuông tại H

=>H nằm trên đường tròn đường kính CO(2)

Từ (1),(2) suy ra C,M,O,N,H cùng nằm trên đường tròn đường kính CO

mà O cố định

nên đường tròn ngoại tiếp ΔHMN luôn đi qua điểm O cố định

20 tháng 12 2017

A B O C H D E F K M I J

Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.

Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.

Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.

Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.

Ta có KF // AJ nên áp dụng Ta let ta có:

\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)

Do AB = BJ nên KM = MF.